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NASA’s draft EIS does NOT establish 

that life from Mars can get to Earth 

faster and better protected in a 

meteorite - or that ANY life on Mars can 

get here in this way – it does NOT 

overturn previous warnings of the 

potential for large scale effects – and 

these mistakes have MAJOR public 

interest and legal implications 

 
Author: Robert Walker (contact email robert@robertinventor.com). Do please contact me if you 

read this and happen to spot any mistakes, omissions or anything to fix however small, thanks!!  

 

I am currently working on this document, so you can find the latest version here 

https://osf.io/uy4rw, doi 10.31219/osf.io/ uy4rw 

 

This version dated 30th December 2022. 

 

Section titles are written like mini-abstracts with the basic argument and conclusion. So you can 

get a good overview of the paper simply by reading the contents list. You can then drill down 

into any sections of interest for more details.  

mailto:robert@robertinventor.com
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Abstract 

This paper focuses on the arguments in NASA’s draft EIS which claims that life can be 

transferred more easily from Mars to Earth in meteorites than in the sample tubes. It also claims 

that there is no significant risk of effects on the environment These statements are at odds with 

the cites they themselves cite on these topics. This paper shows that the literature doesn’t 

support their conclusions and that there are many papers that raise significant concerns for the 

potential for large scale effects on the environment which they don’t refer to. 

 

This paper focuses on the literature on whether life can be transferred from Mars to Earth on 

meteorites, the literature on the potential for large scale effects, on public involvement and on 

the legal process. 

 

This paper also includes for motivation a brief summary of why the published literature says that 

there is potential for extant life in Jezero crater either in microhabitats in a seemingly 

uninhabitable desert in biofilms similarly to the seemingly uninhabitable Mars analogues of the 

McMurdo dry valleys and the  hyperarid core of the Atacama desert. This will be expanded on in 

a follow up paper. 

 

As Rummel at al wrote (Rummel et al, 2002:96).,  

 

“Broad acceptance at both lay public and scientific levels is essential to the overall 

success of this research effort.” 

 

This is part of a series of papers in which we find that the cites for NASA’s draft EIS are so 

flawed that a clean restart is needed with a properly peer reviewed study to assess the 

environmental impact correctly. If NASA uses this as their final EIS, and it gets taken to the 

courts, NASA won’t have a case, It will fail basic review, just through checking the EIS’s own 

cites.  

 

However, I suggest with some changes the proposed action can go ahead in a way that is safe 

for the environment and maximizes return for astrobiology and geology. 

 

What this EIS proposes is similar to building a house without smoke detectors. But a house for 

nearly 8 billion people,  most of whom are not aware that this decision is being made for them 

by NASA. This smoke detector analogy is from Margaret Race from her contribution "No 

Threat? No Way" (Rummel et al., 2000)  

 

We need to examine this properly and if it is needed we need to install those smoke detectors. 

To do this requires an adequate EIS that uses the sources correctly and it needs to consider 

alternatives designed to protect Earth with 100% safety, and not just “no action” 

 

The issues that need to be addressed in this draft EIS are so many and so serious that they 

can’t be covered adequately in a single paper. The reason for writing these papers is to have 
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credibility during the NEPA review process, for any potential legal appeals, and if necessary, for 

the presidential review for large scale effects.  

 

Other issues will be covered in subsequent papers. 

 

Notes for readers and reviewers – I wish to 

submit these papers to peer review to support 

my final comment on the NASA draft 

Environmental Impact Statement for a Mars 

sample return – their aim is to finalize it by spring / 

summer 2023 which gives little time for academic 

responses – although it is based on claims counter 

to the existing literature on planetary protection 

including their own cites – and has numerous very 

serious errors in it as we’ll see in these papers 

 

I hope to get this paper accepted for publication before completion of the NEPA process in 

spring / summer 2023. I don’t expect it to complete peer review by then (though it will be great if 

it can be). 

 

If it is accepted for publication this will help persuade NASA and if necessary any justices, that 

this is indeed something that needs to be looked at. 

I was able to write this analysis quickly because I’ve been working for two years (with early draft 

in 2015) on another paper about planetary protection issues for NASA’s Mars sample return 

mission (Walker, 2022b): 

NASA and ESA are likely to be legally required to sterilize Mars samples to protect the 

environment until proven safe – technology doesn't yet exist to comply with ESF study's 

requirement to contain viable starved ultramicrobacteria that are proven to pass through 

0.1 micron nanopores - proposal to study samples remotely in a safe high orbit above 

GEO with miniature life detection instruments – and immediately return sterilized 

subsamples to Earth,  

Preprint DOI 10.31219/osf.io/rk2gd 

https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd
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For latest version please visit: (url https://osf.io/rk2gd) 

Because of the work I did on that paper beforehand - I was able to produce a rapid study of 

NASA’s draft EIS preprint (Walker, 2022c). which I submitted as an attachment to my last public 

comment on the draft EIS, the comment posted on December 20th (Walker, 2022a):. 

Now that the public comments period is over, I am in the process of converting my longer 

analysis of NASA’s draft EIS into a series of shorter papers, which I plan to submit for 

publication, unless NASA reverse course on this EIS. 

The aim with these papers is to help support any legal challenge by getting my academic 

analysis of their EIS peer reviewed – and also hopefully help direct the justice to find an 

equitable solution such as requiring pre-sterilization of samples that NASA returns to Earth 

rather than just a request to abort the mission altogether. 

I very much hope NASA will reverse course, in which case I have no need to submit these 

papers for publication and I’ll return to work on my original paper (Walker, 2022b) for 

submission for publication in good time, with a great sense of relief!  

N.B. the citation list here is longer than needed as it merges the citations of those two preprints, 

(Walker, 2022c) and (Walker, 2022b). If accepted for publication the citation list can be filtered 

down to the cites actually used here with a few hours of work. 

Colour coding – pale blue for titles of sections in the original main paper – 

my public comments – and proposed titles of preprints in this series – and 

orange for quotes from the NASA draft EIS and associated documents 

I often refer to sections of my original main paper for additional details like this:  

For more details see the section in my main paper preprint (Walker, 2022b): 

• section title 

Colour coding. I use pale blue text for titles of sections in my main paper – I can’t link to as they 

are in a separate document, also for quotes from my previous submissions for the NASA EIS 

comments process.  

I use orange text for quotes from the NASA draft EIS and associated documents 

All other quotes are black. 

This colour distinction should work for all forms of colour-blindness except monochromats who 

will see both types of text as a pale gray according to this simulator – but for them also it 

distinguishes them from the other quotes and the context makes it clear which is which, they 

aren’t easily confused. 

https://osf.io/rk2gd
https://www.color-blindness.com/coblis-color-blindness-simulator/
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Note on use of language – this paper is designed to be maximally 

accessible – by careful use of vocabulary and grammatical structures, but 

never with loss of precision in the meaning of the text 

I have written this paper to be maximally accessible to everyone - theologians, philosophers, 

lawyers, politicians, decision makers, the general public and autistic people. 

 

I wish this choice to survive through to the final version of this paper if possible.  Examples: 

 

• use the most widely accessible vocabulary available to  convey the desired meaning 

• replace technical by non technical terms when it can be done with no loss of precision 

• use non scientific terms and non mathematical language whenever if it is available with 

the same precision.  

 

Examples of using non scientific terms when there is no loss of precision: 

 

• Million instead of 106 

• “Didymo” instead of Didymosphenia geminate 

• Signaling chemicals instead of semiochemicals 

 

Where there are no ordinary language equivalents I explain the term in ordinary language as far 

as is possible when it is first introduced. I may later use a shorter definition of the same term as 

a reminder. Example: 

 

“[GPa stands for Gigapascals, a unit of pressure equivalent to a billion pascals, and 1 

GPa is a little under 10,000 times atmospheric pressure, or the pressure at a depth of 

100 km of water. In this context it refers to a sudden increase of shock pressure which is 

harder to withstand than constant pressure]” 

 

Reminder: 

 

[shock pressure of 1 GPa] 

 

That’s first used in the section: 

• Charles Cockell’s paper (which they don’t mention) said that though planetary 

exchange of photosynthesis might not be impossible - quite specific physical 

conditions and evolutionary adaptations are needed - and the fireball of re-entry is 

the most important filter to stop photosynthetic life getting to Earth 

 

As for the choice to make this paper maximally accessible to autistic people - I am used to 

working with scared people, many autistic and have learnt how to use simple and self contained 

sentence structures that even quite severely autistic people can understand quickly when in the 

middle of a panic attack. 
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This is a “win win” situation as I find this approach usually makes the sentences shorter, with 

fewer words and makes the text easier for everyone to parse quickly.  

 

I did a blog post on the difference between how autistic and non autistic people preferentially 

parse sentences which may help the reader understand the choices I make in sentence 

structure, see (Walker, n.d.) 

 

 

Introduction – natural division into four shorter 

papers 

 

This paper focuses on the transfer of life from Mars to Earth on meteorites, the potential for 

large scale effects, need for public involvement in decisions on acceptable risk – and the effects 

of all this on the legal process. 

 

It also has an introductory section on the potential for sampling martian life in Jezero crater, 

since this is needed to motivate the rest of it. 

 

If this paper is considered too long, it can be divided into sub-papers. I have suggested four 

papers: 

 

1. Potential for sampling martian life in Jezero crater, 

Provisional title: NASA’s draft EIS incorrectly excludes the possibility of present 

day martian life in Jezero crater - it omits the MEPAG review which overturned 

their MEPAG cite and highlighted the unexplored potential for terrestrial life to 

inhabit biofilms in microhabitats or to get transferred in dust – this is even more 

important for Martian life with biology adapted to Mars for billions of years.  

 

2. That the meteorite argument doesn’t work – that it is not true that all or even any life can 

get back to Earth faster and more easily in a meteorite. 

Provisional title: NASA’s draft EIS does NOT establish that life from Mars can get to 

Earth faster and better protected in a meteorite - or that ANY life on Mars can get 

here in this way 

 

3. Potential of likely low risk for large scale harm for public health or the environment  

(partly summarized in this paper) 

NASA’s draft EIS for samples from Mars does NOT overturn previous warnings of 

the potential for likely low risk of large scale harm for public health or the 

environment – in some scenarios life can NEVER be returned safely from Mars to 

Earth – in other scenarios Martian life doesn’t exist, or is harmless or beneficial – 
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we need to know which scenario we have in our solar system 

 

4. Legal implications once NASA recognizes the potential for a likely low risk of large scale 

harm for public health or the environment (partly summarized in this paper) 

 

Provisional title: NASA’s many mistakes in its EIS for samples from Mars have 

MAJOR public interest and legal implications – because of the need to recognize 

the potential for a likely low risk of large scale harm to public health or the 

environment from an unsterilized sample return done incorrectly 
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• Legal implications 

Provisional title: NASA’s many mistakes in its EIS for samples from Mars have 

MAJOR public interest and legal implications – because of the need to recognize 

the potential for a low risk of large scale harm to public health or the environment 

from an unsterilized sample return done incorrectly 

 

The EIS also argues that there is no risk of life in Jezero crater saying that it’s a consensus view 

that Mars has been uninhabitable for terrestrial life for millions of years and saying that if there is 

present day life on Mars that it isn’t present in Jezero crater. Their cites don’t support this. 

 

The MEPAG review study which they don’t cite finds some potential even for terrestrial life to be 

able to survive in Jezero crater in a seemingly uninhabitable desert similar to other seemingly 

uninhabitable but inhabited Mars analogue deserts on Earth or transferred there in the dust 

 

This will be a topic for a separate paper but a brief summary is included here. 

 

This paper expands on points 9, 10 and 11 in my final comment to 

NASA’s draft EIS 

 

This is to follow on from the issues raised in the comment I submitted to the EIS posted on 20th -

December. This was the summary which I also supported with multiple attachments to my final 

comment (Walker, 2022a):  

 

I recommend this draft Environmental Impact Statement is stopped, and a new one 

prepared after doing the necessary size limits review, and fixing whatever led to its many 

errors. 

 

1. The BSL-4 recommendation in this EIS is out of date, based on science of 1999. 

 

2. This EIS does not mention the most recent Mars Sample Return study from 2012 by 

the European Space Foundation which reduced the 1999 size limit from 0.2 microns 

to 0.05 microns to contain ultramicrobacteria and required 100% containment at that 

size. 

 

3. A BSL-4 is not designed to this standard. In recent reviews of filter technology, I find 

NO AIR FILTERS with that capability – and no evidence anybody is working on 

them. Air filters for larger particles remove some of these very small particles kicked 

out of the airstream by jostling of air molecules by Brownian motion but can't remove 

all. It is an unusual requirement. 

 

4. NASA haven't responded to my comment in May which alerted them to this 

omission. They still don't cite the ESF study. Also, the ESF said their limit needs to 
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be updated periodically. An update is certainly due a decade later. 

 

5. The EIS has an overnarrow scope in the Purpose and Need section - it requires 

samples to be returned unsterilized to terrestrial labs for "safety testing". This won’t 

work. NASA believe they reduced the most abundant biosignatures to 0.7 

nanograms per gram of returned rock sample – this guarantees a positive test. There 

will be no way to know if tubes contain safe terrestrial life or potentially unsafe 

martian life. 

 

6. This narrow scope improperly excludes the reasonable alternative of presterilizing 

samples before they reach Earth's biosphere - which achieves virtually the same 

science return and keeps Earth 100% safe. By a 1997 case in the 7th circuit this 

alone probably invalidates the EIS. 

 

7. The high levels of forward contamination make astrobiology almost impossible. I 

recommend bonus samples of dirt, dust and atmosphere collected in a STERILE 

container with no terrestrial organics, brought to Mars especially on the ESA fetch 

rover. 

 

8. I recommend returning these bonus astrobiology samples to a safe orbit above GEO 

where they can be tested for life 

 

9. The EIS’s reasoning for no significant environmental effects contradicts the 

conclusion of the NRC study from 2009 which they do cite, which says the risk 

of even large-scale impacts on human health or environment is likely low but 

not demonstrably non zero. It also warns against the meteorite argument that 

they use. I found multiple errors in my analysis. 

 

10. Returned life COULD be harmful. Example, fungi kill crops, other life and 

sometimes immunocompromised humans. Botulism, ergot disease, tetanus, 

all are the results of exotoxins not adapted to the lifeforms they kill, similarly 

some algal blooms kill dogs and cows that eat them. BMAA misincorporated 

for L-serine causes protein misfolding and is a neurotoxin implicated in some 

cases of the disease that affected Steven Hawking - an alternative 

biochemistry may have many different amino acids similar enough to 

terrestrial amino acids to be misincorporated. Or perhaps martian life evolved 

from scratch from mirror chemicals as mirror life - the effect on our biosphere 

can't be predicted. I give many such examples in my preprint. Or it could be 

harmless like microbes from a terrestrial desert, or indeed beneficial. But we 

DON'T KNOW. So we need to find out first 

 

11. What matters for invasive species are the ones that can’t ‘get here, like 

starlings that can't cross the Atlantic rather than barn swallows. The 

freshwater diatom “Didymo” is invasive in New Zealand and can't get from one 
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freshwater lake to another without humans. A microbe adapted to briny seeps 

on Mars and to spreading in dust storms shielded from UV, may well not get to 

Earth in a meteorite, while a sealed sample tube including Martian atmosphere, 

at Mars atmospheric pressure, is like a mini spaceship. 

 

12. Quarantine of humans can’t keep out a fungal disease of crops, mirror life etc.  

 

13. So any unsterilized samples will need to be studied remotely via telerobotics which 

also greatly reduces forwards contamination (issues with filtering ultramicrobacteria 

will go both ways). 

 

14. astrobiologists now have tiny instruments that can go from sample preparation to life 

detection, even to a gene sequence, operated remotely on Mars. They could send 

hundreds of these in each 7 ton payload of the Ariane 5 to above GEO. 

 

Let's make this an even better mission and SAFE for Earth.  

Thanks! 

 

The current paper expands on points 9, 10 and 11 along the lines outlines in the attachments to 

that submission. 

 

NASA haven’t responded to my public comments on the draft EIS, 

or my follow up email to the Planetary Protection Office on any of 

these issues so they can’t be resolved by dialog 

 

NASA’s draft EIS didn’t mention my previous public comment on May 28th or answer the issues 

I found already back then. (Walker, 2022a): 

 

My earlier public comment on 28th particularly focused on issues 1, 2 and 3  

 

NASA's proposed action seems likely to fail legal review, since a BSL-4 facility can't 

comply with the 2012 European Space Foundation study's limit (Ammann et al, 

2012:14ff): 

 

"The release of a single unsterilized particle larger than 0.05 µm is not acceptable under 

any circumstances". 

 

Their rationale: viable starvation limited ultramicrobacteria can pass through a 0.1 

micron filter (Miteva et al, 2005). 

 

This limit is easier to achieve in water under high pressure. One study achieved 100% 
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removal of 0.03 micron polioviruses using carbon nanotubes loaded with silver. (Kim et 

al, 2016) (Singh et al, 2020:6.3). 

 

However aerosol filters are less effective. Even ULPA level 17 filters remove only 

99.999995%. Also those filters are only tested to 0.12 microns (BS, 2009:4). At the 

ESF's 0.05 microns, an experimental 6-layer charged nanofiber filter for coronaviruses 

filtered out 88% of ambient aerosol particles (Leung et al, 2020), far from 100% 

containment. 

 

The ESF also said the chance of release of even a single unsterilized particle at 0.01 

microns must be less than 1 in a million, to stop gene transfer agents which readily 

transfer novel capabilities to unrelated species of archaea overnight in sea water 

(Maxmen, 2010). 

 

In that submission in May I also uploaded the current version at the time of my large paper on 

NASA’s Mars sample return mission (Walker, 2022b) which identified most of the other points I 

cover here as issues for NASA’s mission but I didn’t specifically tie them to their proposed EIS 

which wasn’t yet published at the time. 

 

Then the other issues were identified in my comments after the draft EIS was published, 

focusing on the text of the EIS . (Walker, 2022a). 

 

The agency concerned, NASA, haven’t contacted me via email on either occasion, although I 

provided my email address when I submitted the comments. 

 

NASA also haven’t responded to the email I sent to the planetary protection office about these 

issues. So it is not possible to enter into a dialog with NASA on this topic at the current time. 

 

 

Future papers planned for this series on serious errors in NASA’s 

draft EIS 

 

I plan other papers on: 

 

1. Impossibility of containing 0.05 / 0.01 microns in a BSL-4, need for review of the size 

limit and survey of literature on air filters showing none currently meet the size limit 

requirements set by the ESF in 2012. 

 

Provisional title: NASA improperly assume samples from Mars can be contained in 

a Biosafety Level  4 laboratory - this would NOT comply with the size limit set by 

the European Space Foundation in 2012,  - this is the only Mars sample return size 

limit update since 1999 – yet it isn’t cited in the draft EIS 
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2. Unexplored potential for sampling martian life in Jezero crater (partly summarized in this 

paper) 

 

Provisional title: NASA’s draft EIS incorrectly excludes the possibility of present 

day martian life in Jezero crater - it omits the MEPAG review which overturned 

their MEPAG cite and highlighted the unexplored potential for terrestrial life to 

inhabit biofilms in microhabitats or to get transferred in dust – this is even more 

important for Martian life with biology adapted to Mars for billions of years.  

 

3. Not established that all or even any putative martian life on or near the surface in Jezero 

crater can get back to Earth faster and more easily in a meteorite (this paper).. 

Provisional title: NASA’s draft EIS does NOT establish that life from Mars can get to 

Earth faster and better protected in a meteorite - or that ANY life on Mars can get 

here in this way 

 

4. Unknown potential for microbes from Mars to cause large scale harm for public health or 

the environment - likely low risk but not demonstrably zero (partly summarized in this 

paper) 

NASA’s draft EIS for samples from Mars does NOT overturn previous warnings of 

the potential for likely low risk of large scale harm for public health or the 

environment – in some scenarios life can NEVER be returned safely from Mars to 

Earth – in other scenarios Martian life doesn’t exist, or is harmless or beneficial – 

we need to know which scenario we have in our solar system 

 

5. Legal and public interest implications once NASA recognizes unknown potential for 

microbes from Mars to cause large scale harm for public health or the environment 

(partly summarized in this paper) 

 

Provisional title: NASA’s many mistakes in its EIS for samples from Mars have 

MAJOR public interest and legal implications – because of the need to recognize 

the potential for a likely low risk of large scale harm to public health or the 

environment from an unsterilized sample return done incorrectly 

 

6. Showing that Perseverance’s permitted level of organics makes this a mission mainly of 

interest to geology and recommending sterilization as the simplest way to keep Earth 

safe 

 

Provisional title for 4+5: Terrestrial biosignatures in NASA’s samples from Mars 

guarantee false positive life detection - the required "Safety testing" achieves 

nothing – and improperly rules out the reasonable alternative of samples sterilized 

before they reach Earth which keeps Earth 100% safe 
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7. We can’t protect Earth from martian life using human quarantine in a human operated 

space station until we know what is there 

 

Provisional title: Human quarantine can’t protect Earth from harm from martian 

microbes unless we know what we are protecting against and what its capabilities 

are – in some scenarios humans exposed to martian life can never return to Earth 

in a way that’s safe for our biosphere  

 

8. Building on previous papers – a request for NASA to include a sterilized return as a 

reasonable alternative in the EIS 

 

9. Even without forward contamination, difficulty of testing a sample for presence of life non 

destructively – need for Sagan’s “vigorous program of unmanned Martian exobiology” 

before we can know if it is safe or not to return any unsterilized materials to Earth  

 

10. A request to NASA to include as a reasonable alternative a bonus sample for 

astrobiology collected in a sterile container to return for remote study to a satellite similar 

to other Geostationary satellites in size with a centrifuge inside to simulate Martian 

gravity, in a safe orbit for Earth, well above GEO – this would let astrobiologists study 

martian dust and dirt in a similar way to studies in situ on Mars which would be a first 

start on Sagan’s vigorous program of unmanned exobiology and preparation to send 

those instruments for in situ studies on Mars later – with a proposal to also add a pebble 

from the Martian surface collected with a presterilized marscopter as a first step towards 

future return of rock samples from Mars totally free from terrestrial contamination – and 

proposal to target recently excavated craters as there is a near certainty to find a crater 

that excavated to a depth of at least 2 meters within reach of the rovers.. 

 

Provisional title for 8 - 10: How NASA’s MSR mission can be transformed into a 

100% safe mission for Earth that retains virtually all science interest, while bonus  

astrobiology samples returned in a STERILE container sent to Mars can boot up 

the first stage of Carl Sagan’s “vigorous program of unmanned Martian 

exobiology and terrestrial epidemiology”. 

 

Annotated copy of NASA’s draft Environment 

Impact Statement 

 

This is in the form of a word document NASA_EIS_annotated.docx - you don't need Word to 

read it - though sadly it leaves out formatting and graphics from the comments. If it gets stuck 

on the Word icon try a refresh of the page and it will likely show up. 

 

https://1drv.ms/w/s!Aqtl1H_vlvPKj0Svm4eccWvUvWJu?e=qF7PUc
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Also, sadly I couldn’t get the page numbers to match in Word so you need to search for the text 

to find the same passage in my annotated version. 

 

If you have Word you can download the pdf complete with annotations either from that page or 

via this direct link. NASA_EIS_annotated.docx (for download) or as a zip (only slightly smaller) 

which then has all the formatting and graphics for the annotations. 

[For 1st separate paper] Yes there are significant 

reasons to protect Earth from life returned from 

Jezero crater on Mars – every step in the chain of 

arguments in NASA’s EIS are invalid – to be 

expanded on in other papers in this series 

This is to motivate the rest of this paper. If NASA’s draft EIS was correct that there is no life in 

Jezero crater, there is nothing to protect against. But we do NOT know that. 

 

Provisional title: 

 

“There IS potential for NASA to return martian life from  Jezero crater – the 

MEPAG review overturned the MEPAG cite NASA’s draft EIS relies on and 

highlighted the unexplored potential for terrestrial life to inhabit biofilms in 

microhabitats or to get transferred in dust – this is even more important for 

Martian life with biology adapted to Mars for billions of years”. 

 

EVERY statement in this chain of reasoning is improperly cited: 

• that Mars has been uninhabitable for millions of years 

- their most recent cite is about a search for CURRENT small scale and micro habitats on 

Mars so the sentence in the EIS flatly contradicts its most recent cite. 

 

• that if there is life on the surface of Mars elsewhere, it can't get to Jezero crater 

-  the cite in the EIS does say this but it was overturned by the MEPAG review 

commissioned by ESA and NASA which said it is necessary to investigate the potential 

for terrestrial life to establish itself in apparently uninhabitable regions using local 

microhabitats and biofilms or to be transported in the dust to distant parts of Mars (which 

means transfer back is also possible)  

 

Also both MEPAG and the MEPAG review are only about the capabilities of terrestrial 

life not life evolved on Mars possibly independently with differences in biology, and 

adapted to Martian conditions for billions of years  

 

https://robertinventor.online/booklets/NASA_MSR_comment/NASA_EIS_annotated.docx
https://robertinventor.online/booklets/NASA_MSR_comment/NASA_EIS_annotated.zip
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• that if there is life in Jezero crater it can get to Earth faster and better protected in a 

meteorite 

- their cite does establish that it MIGHT be possible for some exceptionally hardy forms 

of life to get to Earth from Mars rarely. It does NOT establish that less hardy life can get 

here at all never mind faster or better protected.  

 

One of their cites indeed gives reasons why conclusions about meteorites shouldn’t be 

applied to a Mars sample return mission - in a section they don’t cite (subject of this 

paper) 

 

• that if life is returned in a sample that didn't get here on a meteorite, the potential 

for environmental harm  or large scale harm on human health is not significant and 

can be ignored. 

- their cite is internal to the NASA sterilizing subcommittee and it represents a minority 

view in astrobiology  

 

The sterilizing subcommittee doesn't mention any of the many astrobiologists who said 

this reasoning is false, dating back to Carl Sagan (Sagan, 1973:162), and Joshua 

Lederberg  (Lederberg, 1999b). They said we can't know what Mars microbes would do 

to humans or our biosphere, and that there IS potential for significant long term and 
large scale harm. 
 
Nor does it cite the National Research Council report in 2009  which said (Board et al, 
2009: 48). 

 
“The potential hazards posed for Earth by viable organisms surviving in 
samples is significantly greater with a Mars sample return than if the same 
organisms were brought to Earth via impact-mediated ejection from Mars 
 
… The committee found that the potential for large-scale negative effects on 
Earth’s inhabitants or environments by a returned martian life form appears 
to be low, but is not demonstrably zero” 

Also as we’ll see, there are many specific examples in the literature of types of martian 

life could potentially cause  large scale harm, such as fungi, diseases of biofilms or more 

generally new forms of life based on an independently evolved biology introduced to our 

biosphere. These examples aren’t discussed. 

 

Also, each statement in this chain in the EIS is one you can only consider if the previous 

statements were all invalid.  

 

NASA’s intention is clearly to build confidence by showing that each stage is an additional proof 

that no harm is possible. However this very long chain of steps where each one can only be 

considered if none of the previous steps are valid is likely to have the opposite effect of reducing 

confidence even on a reader who doesn’t detect the issues with the cites. And in reality as we’ll 

see ALL the steps in this chain of reasoning are invalid. 

 

file:///C:/Users/rober/Downloads/chester.docx%23kix.urfjjsuep509
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The way they do improper citing include: 

 

- missummarize the papers they cite  

 

- cite papers that say explicitly they didn't study the topic they are cited for  

 

- omit later papers that overturn the results they cite. 

 

- present the views of a minority without citing the views of a majority and without 

mentioning reasons the majority give for their views 

 

Meanwhile, here is a brief summary for the first two issues and the last issue is covered at the 

end of this paper. 

[For 1st separate paper] Draft EIS says (MISTAKENLY) 

existing credible evidence suggests Mars hasn’t been 

habitable for life as we know it for millions of years - their cite 

says that we need to search for CURRENT habitats in a 

seemingly uninhabitable Mars 

 

One central argument in the draft EIS is that Mars is lifeless anyway and that they are doing the 

sample return precautions just out of an “abundance of caution”. The draft EIS says that (NASA, 

2022eis: 1-6):  

 
Existing credible evidence suggests that conditions on Mars have not been amenable 
to supporting life as we know it for millions of years (iMARS Working Group 2008, 
National Research Council 2011, Beaty et al. 2019, National Research Council 2022). 

 
But their most recent 2022 source for this “existing credible evidence” says the opposite from 
their summary.  It says exploration of Mars will help establish whether localised habitable 
regions currently exist. Their source refers to Mars as “seemingly uninhabitable”, not 
“uninhabitable. See: (Smith et al, 2022: 393) (click on X button on banner to go straight to the 
page) 
 

Section: 
 

“Are There Chemical, Morphological and / or Physiologic / Metabolic 
or Other Biosignatures in Currently Habitable Environments in the 
Solar System 

 
The exploration of … Mars (Curiosity, Perseverance) will help establish whether 
localised habitable regions currently exist within these seemingly uninhabitable worlds.  
 

https://nap.nationalacademies.org/read/26522/chapter/16#393
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[Emphasis on “currently” mine] 
 
 

 
Here is a screenshot. 

 
HOW did NASA miss all these errors in its EIS? 
Source: “exploration … will help establish whether localized habitable regions 
CURRENTLY exist within these seemingly uninhabitable worlds.” 
 
NASA: “Existing credible evidence suggests that conditions on Mars have not been 
amenable to supporting life as we know it for millions of years. 
 
Screenshot from: (Smith et al, 2022: 393) 
 

https://nap.nationalacademies.org/read/26522/chapter/16#393
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Their source here continues by saying that once habitable environments are identified, the 
greatest challenge is the search for evidence of life and it warns about the need for inclusivity, 
not relying solely on what life on Earth can do as a guide.  (Smith et al, 2022: 393): 
 

Once habitable environments are identified, the search for evidence of life represents 
the logical next step, and also the greatest challenge. 
… 
Inclusivity emphasizes consideration of a wide range of possible alien biosignatures 
(chemical, morphological and / or physiologic/ metabolic), not relying solely on Earth life 
as a guide, as well as their prevalence and detectability in the given environment. As 
such, inclusivity seeks to minimize potential false negative results where life could be 
“missed” for lack of the ability to detect or recognize it. 

 
 
The details here are for a separate paper based on these sections of my preprint: 
 

[For 1st separate paper] Published views of astrobiologists – some think 

there is a high chance the surface of Mars is inhospitable to terrestrial life 

but none go as far as certainty – and others say it may have small niches 

suitable for microbial life over much of the surface – and a minority think 

Viking sampled life already in the 1970s – it could have uninhabited 

habitats but it isn’t easy to find a source from this century stating EIS's 

claim of “existing credible evidence” that it is uninhabitable 

 

Many astrobiologists have expressed a view that present day Mars may well be habitable to 

terrestrial life in part. This need not mean that there is life there, it could have uninhabited 

habitats i.e. which life could colonize but with nothing left by way of early Martian life to colonize 

them  (Cockell, 2014).  Some astrobiologists do say that Mars has a high chance to be 

inhospitable but not certainty and many think Mars may have small niches suitable for life, 

similar to niches found in the soil or rocks of our driest coldest deserts which often have small 

communities of microbes, even if they are only habitable at microbial scales.  

 

Many astrobiologists also think it could have extant Martian life. A few think there is a possibility 

that Viking discovered life in the 1970s.  

 

There is no consensus for any of these positions. But so far I haven’t found NASA’s supposed 

“consensus” as a published point of view of any astrobiologist in any of the papers I’ve looked 

at. I am interested if anyone knows of such a source from a reputable peer reviewed journal so I 

can add it to the range of points of view of astrobiologists. 

 

This quote is from a paper about planetary protection in the forwards direction by Rummel and 

Conley, both former planetary protection officers for NASA (Rummel et al, 2017) 

 

https://nap.nationalacademies.org/read/26522/chapter/16#393
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"Claims that reducing planetary protection requirements wouldn't be harmful, 

because Earth life can't grow on Mars, may be reassuring as opinion, but the facts 

are that we keep discovering life growing in extreme conditions on Earth that 

resemble conditions on Mars. We also keep discovering conditions on Mars that 

are more similar—though perhaps only at microbial scales—to inhabited 

environments on Earth, which is where the concept of Special Regions initially 

came from."  

 
 

Here are a few example statements: 

 
Davila et al. (Davila et al, 2010). 

 

"We argue that the strategy for Mars exploration should center on the search for 

extant life. By extant life, we mean life that is active today or was active during the 

recent geological past and is now dormant. As we discuss below, the immediate strategy 

for Mars exploration cannot focus only on past life based on the result of the Viking 

missions, particularly given that recent analyses call for a re-evaluation of some of 

these results. It also cannot be based on the astsumption that the surface of Mars is 

uniformly prohibitive for extant life, since research contributed in the past 30 years in 

extreme environments on Earth has shown that life is possible under extremes of cold 

and dryness."  

 
Westall (Westall , 2013:192) 
 

"This presupposes that the ephemeral surface habitats could be colonized by 
viable life forms, that is, that a subsurface reservoir exists in which microbes 
could continue to metabolize and that, as noted above, the viable microbes could 
be transported into the short-lived habitat 
 
.... Although there are a large number of constraints on the continued survival of 
life in the subsurface of Mars, the astonishing biomass in the subsurface of Earth 
suggests that this scenario as a real possibility." 

 
Morozova (Morozova et al, 2006) 
 

"The observation of high survival rates of methanogens under simulated Martian 
conditions supports the possibility that microorganisms similar to the isolates 
from Siberian permafrost could also exist in the Martian permafrost" 

 
 
Crisler et al (Crisler et al, 2012) 
 
 

Our results indicate that terrestrial microbes might survive under the high-salt, 
low-temperature, anaerobic conditions on Mars and present significant potential 
for forward contamination. Stringent planetary protection requirements are 
needed for future life-detection missions to Mars 
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Renno (Renno, 2014):  

"This is a small amount of liquid water. But for a bacteria, that would be a huge 

swimming pool - a little droplet of water is a huge amount of water for a bacteria. 

So, a small amount of water is enough for you to be able to create conditions for 

Mars to be habitable today'. And we believe this is possible in the shallow 

subsurface, and even the surface of the Mars polar region for a few hours per day 

during the spring." 

 

Stamenković (Wall, 2018)   

 

 

There is still so much about the Martian habitability that we do not 

understand, and it's long overdue to send another mission that tackles the 

question of subsurface water and potential extant life on Mars, and looks 

for these signals  

 

 
De Vera et al (de Vera et al, 2014) 
 

 
"This work strongly supports the interconnected notions 
 (i) that terrestrial life most likely can adapt physiologically to live on Mars (hence 
justifying stringent measures to prevent human activities from contaminating / 
infecting Mars with terrestrial organisms); 
(ii) that in searching for extant life on Mars we should focus on "protected putative 
habitats"; and  
(iii) that early-originating (Noachian period) indigenous Martian life might still 
survive in such micro-niches despite Mars' cooling and drying during the last 4 
billion years" 

 
Cockell (Deighton, 2016)  

 

 

Most microbes can grow in different types of extremes and the extremes that we 

are looking at, things like radiation, perchlorate salts and also sulphate salts 

(found on Mars), they will grow in that. It’s just a question of trying to determine 

what the limits are and that’s the work we're doing at the moment. Anywhere 

where we’ve gone to the deep subsurface (on earth) today, where there is liquid 

water, there is a high chance that environments are habitable, 

 

Simply because Mars is a planet of volcanic rock, and when volcanic rock 

weathers that provides an environment for microbes to grow and reproduce, I 

think we can already say there is a high chance there are habitable environments. 
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‘At the moment we just don’t know what the origin of life requires, going from 

simple chemicals to self-replicating microbe,’ Edinburgh’s Prof. Cockell said. ‘If 

we looked at many planets, many environments and didn’t find life, then that 

would tell us that life is extremely rare and that early spark was an unusual event. 

‘And then we’d have to try and find out exactly why it was, and what happened in 

those early stages of life that was unusual on the earth.’. 

 

Cabrol (Cabrol, 2021) 

 

Arguably, dispersal does not imply seeding, but it provides the potential for it and, 

if life started on Mars, odds are that not only is it still there, but it is everywhere it 

can be where conditions allow dormancy or metabolic activity. Here, terrestrial 

analogues in extreme environments show that ‘everywhere it can be’ does not, 

however, mean easy to see. Hidden oases are often measured in centimetres to 

micrometres, their presence intimately linked to the subtle interplay and feedback 

mechanisms between living things and their environment. 

 
Bianciardi et al (Bianciardi et al, 2012)  
 

"These analyses support the interpretation that the Viking LR experiment did 
detect extant microbial life on Mars" 

 
Miller et al (Miller et al, 2002).  
 

"Did Viking Lander biology experiments detect life on Mars? ... Recent 
observations of circadian rhythmicity in microorganisms and entrainment of 
terrestrial circadian rhythms by low amplitude temperature cycles argue that a 
Martian circadian rhythm in the LR experiment may constitute a biosignature."  

 
Levin et al (Levin et al, 2016) 
 

"It is concluded that extant life is a strong possibility, that abiotic interpretations 
of the LR data are not conclusive, and that, even setting our conclusion aside, 
biology should still be considered as an explanation for the LR experiment. 
Because of possible contamination of Mars by terrestrial microbes after Viking, 
we note that the LR data are the only data we will ever have on biologically 
pristine martian samples" 

 
In the 2020 conference Mars extant life: what's next? (Carrier et al, 2020) a significant fraction 
of the participants thought that there is a possibility Mars has extant life.  
 

Primary conclusions are as follows: A significant subset of conference attendees 
concluded that there is a realistic possibility that Mars hosts indigenous microbial 
life. A powerful theme that permeated the conference is that the key to the search 
for martian extant life lies in identifying and exploring refugia (“oases”), where 
conditions are either permanently or episodically significantly more hospitable 
than average. Based on our existing knowledge of Mars, conference participants 
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highlighted four potential martian refugium (not listed in priority order): Caves, 
Deep Subsurface, Ices, and Salts. 
 

 
 

[For 1st separate paper] Draft EIS says MISTAKENLY that the 

2014 MEPAG study represents a consensus opinion within 

the astrobiology scientific community – it was not a consensus 

even for forwards contamination as it was overturned by the 2015 

review, commissioned by ESA and NASA which emphasized 

potential for microhabitats within apparently uninhabitable 

regions, and transport of life on dust 

Another central part of the reasoning is they claim that there is no life in Jezero crater where 

Perseverance is collecting samples even if there is life elsewhere. Again they falsely claim a 

consensus on this. (NASA, 2022eis: S-4)  

 

Consensus opinion within the astrobiology scientific community supports a conclusion 

that the Martian surface is too inhospitable for life to survive there today, particularly at 

the location and shallow depth (6.4 centimeters [2.5 inches]) being sampled by the 

Perseverance rover in Jezero Crater, which was chosen as the sampling area because it 

could have had the right conditions to support life in the ancient past, billions of years 

ago (Rummel et al. 2014, Grant et al. 2018).  

 

Their source (Rummel et al , 2014)  is a study of “special regions”, regions on Mars that 

terrestrial life might be able to colonize. 

 

This is not a consensus position. Even as that 2014 report by Rummel et al was in publication, 

NASA and ESA commissioned a review (Board, 2015)   which overturned many of its findings 

including ALL the ones relevant to Jezero crater. For instance it said that Rummel et al doesn’t 

adequately discuss transport in the atmosphere, that would include dust storms (Board, 2015 

:12): 

 

The SR-SAG2 report does not adequately discuss the transport of material in the 

martian atmosphere. The issue is especially worthy of consideration because if survival 

is possible during atmospheric transport, the designation of Special Regions becomes 

more difficult, or even irrelevant.  

 

It also says that MEPAG only briefly considered the implications of our lack of knowledge about 

the potential for microhabitats within apparently uninhabitable regions (Board, 2015 :12): 

 

https://nap.nationalacademies.org/read/21816/chapter/4?term=dust#12
https://nap.nationalacademies.org/read/21816/chapter/4?term=dust#12
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Physical and chemical conditions in microenvironments can be substantially different 

from those of larger scales. Although the SR-SAG2 report considered the 

microenvironment (Finding 3-10), the implications of the lack of knowledge about 

microscale conditions was only briefly considered. 

The MEPAG review also has a long section on biofilms and the ability of microbes to modify 

microhabitats by surrounding themselves with “extrapolymeric substances” - proteins, 

polysaccharides, lipids, DNA and other molecules. 

These EPS can modify the microhabitat and make it much more habitable for microbes and help 

them cope with stressors in the environment. (Board, 2015 :11) 

Also, MEPAG looked at forward contamination, to try to delineate areas where missions TO 

Mars risk introducing terrestrial life that might be able to replicate on Mars. MEPAG did NOT an 

attempt to explore possible locations for extant native martian life returned FROM Mars.  

 

MEPAG say this explicitly, that they are not going to discuss habitats for extant Martian life. 

(Rummel et al , 2014:888)   

 

Special Regions are regions ‘‘within which terrestrial organisms are likely to replicate’’ as 

well as ‘‘any region which is interpreted to have a high potential for the existence of 

extant martian life.’’ 

… 

At present there are no Special Regions defined by the existence of extant martian life, 

and this study concentrates only on the first aspect of the definition. 

 

The issue here is that martian life might have capabilities terrestrial life doesn’t have through a 

different biochemistry or even just by having a different salt in the intercellular fluid instead of 

sodium chloride.  We may not need to consider this in much depth for a study on forward 

contamination but it is essential to consider the possibility of martian life with capabilities 

different from terrestrial life for backward contamination. 

 

Dirk Schulze Makuch et al suggested that native life on Mars might have evolved to use the cold 

brines on Mars with a novel cold adapted biochemistry, using perchlorates or hydrogen peroxide 

internally, in place of the chloride salts in our cells (Schulze-Makuch et al, 2010a).  

 

The Mars surface also has many chaotropic agents which could reduce the minimum 

temperatures for cell division, including MgCl2, CaCl2, FeCl3, FeCl2, FeCl, LiCl, chlorate, and 

perchlorate salts (Rummel et al , 2014).  

 

I cover this in more detail in my original paper (Walker, 2022b)  under: 

 

• How Martian life could make perchlorate brines habitable when they only have enough 

water activity for life at -70 °C – biofilms retaining water at higher temperatures - 

https://nap.nationalacademies.org/read/21816/chapter/4#11
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chaotropic agents permitting normal life processes at lower temperatures – and novel 

biochemistry for ultra low temperatures 

[For 1st separate paper] 2015 MPEG2 review of the 2014 MEPAG report 

revises ALL its conclusions relevant to Jezero crater – and says maps 

made from orbit only provide information at the scale of the map - and 

“can only represent the current (and incomplete) state of knowledge for a 

specific time” 

The biggest change between on (Rummel et al , 2014) and (Board, 2015)  was on the utility of 

maps to map out the special regions. The review board said that maps made from orbit can only 

provide information at the scale of the map and so are a generalization. They say that maps can 

only represent the current (and incomplete) state of knowledge for a specific time. 

They say that this knowledge is subject to change as new information is obtained: (Board, 2015 : 

28) (page number here links directly to the relevant page on the site). 

Another potential source of misinterpretation related to the use of maps in Special Region 

studies is the issue of scale. Identification of a Special Region needs a multiscale 

approach (see also the discussion in Chapter 2, “Detectability of Potential Small Scale 

Microbial Habitats,” and thus, as far as missions to Mars are concerned, conservatism 

demands that each landing ellipse be scrutinized on a case-by-case basis. 

Maps, which come necessarily at a fixed scale, can only provide information at that scale 

and are, therefore, generalizations 

… 

In general, the review committee contends that the use of maps to delineate regions with 

a lower or higher probability to host Special Regions is most useful if the maps are 

accompanied by cautionary remarks on their limitations. Maps that illustrate the 

distribution of specific relevant landforms or other surface features can only 

represent the current (and incomplete) state of knowledge for a specific time—

knowledge that will certainly be subject to change or be updated as new information 

is obtained. 

In more detail, (Board, 2015 :12) the temperature and humidity is only measured on large scales, 

and microhabitas can be substantially different physically and chemically. 

The definition of Mars Special Regions is based on temperature and humidity conditions 

that are measured on spatial scales that do not reflect these conditions within microscale 

niches that can be potential habitats for microbial communities. Physical and chemical 

conditions in microenvironments can be substantially different from those of larger 

scales. Although the SR-SAG2 report considered the microenvironment (Finding 3-10), 

https://nap.nationalacademies.org/read/21816/chapter/7
https://nap.nationalacademies.org/read/21816/chapter/4?term=dust#12
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the implications of the lack of knowledge about microscale conditions was only briefly 

considered. 

There are many examples of these small-scale and microscale environments with microbial 

communities on Earth. The biofilm, a mix of many species of microbes, can make the conditions 

suitable for microbial propagation despite adverse and extreme surrounding conditions. 

There are many examples of small-scale and microscale environments on Earth (see e.g., 

Lindsay and Brasier 2006) that can host microbial communities, including biofilms, 

which may only be a few cell layers thick. The biofilm mode of growth, as noted 

previously, can provide affordable conditions for microbial propagation despite adverse 

and extreme conditions in the surroundings. 

This is something that has become more obvious on Earth in recent years. We need a better 

understanding of this for Mars. 

On Earth, the heterogeneity of microbial colonization in extreme environments has 

become more obvious in recent years (e.g., Azúa-Bustos et al. 2015). To identify Special 

Regions across the full range of spatial scales relevant to microorganisms, a better 

understanding of the temperature and water activity of potential microenvironments on 

Mars is necessary. 

They give examples of microenvironments - craters, and even microenvironments underneath 

rocks could become special regions when the temperature and humidity on the larger landscape-

scale doesn’t permit terrestrial life to flourish on Mars. 

For instance, the interior of the crater Lyot in the northern mid-latitude has been 

described as an optimal microenvironment with pressure and temperature conditions that 

could lead to the formation of liquid water solutions during periods of high obliquity 

(Dickson and Head 2009). Craters, and even microenvironments underneath and on the 

underside of rocks, could potentially provide favorable  

 

 

[For 1st separate paper] 2015 review of the 2014 MEPAG report 

recommends further research into detectability of potential small-

scale microbial habitats on Mars as a knowledge gap to be looked at in 

the future 

This is in their Appendix A. (Board, 2015 :  46)  

The need for more research into detectability of potential small-scale microbial habitats 

https://nap.nationalacademies.org/read/21816/chapter/12#46
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Detectability of Potential Small-Scale Microbial Habitats 

Perform in situ investigations in extreme environments on Earth to deepen our knowledge 

about microbial processes and habitability at micron scales. Adapt and optimize existing 

technologies and develop new ones to undertake the kind of investigations which may be 

used in the future exploratory missions to other planets and moons of astrobiological 

relevance. 

Details here are for a separate paper.  

 

[For 1st separate paper] 2015 review of the 2014 MEPAG report 

recommends further research into viability of terrestrial microbes 

transported in the dust storms on Mars as a knowledge gap to be looked 

at in the future 

Need for more research into microbial viability of terrestrial life when transported in dust storms 

(Board, 2015 :  46) 

Translocation of Terrestrial Contamination 

Undertake investigations of transport mechanisms and microbial viability in Mars 

simulation chambers—e.g., the Mars Surface Wind Tunnel facility at NASA’s Ames 

Research Center or the low-pressure recirculating wind tunnels in the Mars Simulation 

Laboratory at Aarhus University—wherein microbes and spores are exposed to Mars-

relevant levels of ultraviolet radiation, desiccation, nutrient deficit, and air movement, to 

assess the likelihood of survival during transport by, for example, dust storms. 

As far as I can tell this research hasn’t been done, at least I find no recent studies that cite the 

older studies on the topic. 

In more detail on dust the 2015 report says dust can block UV and make microbes more viable, 

and microbes often occur in cell clusters and the inner cells would be protected against UV in 

dust storms 

: (Board, 2015 : 12) 

Atmospheric transport can move microbial cells and spores over long distances, as is 

known from investigations of foreign microbes delivered to North America from Africa 

via Saharan dust (Chuvochina et al. 2011; Barberàn et al. 2014) and Asia (Smith et al. 

2012). 

… 

https://nap.nationalacademies.org/read/21816/chapter/12#46
https://nap.nationalacademies.org/read/21816/chapter/4?term=dust#12
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In addition to dilution effects, the flux of ultraviolet radiation within the martian 

atmosphere would be deleterious to most airborne microbes and spores.  

However, dust could attenuate this radiation and enhance microbial viability. In 

addition, for microbes growing not as single cells but as tetrades or larger cell chains, 

clusters, or aggregates, the inner cells are protected against ultraviolet radiation. 

Examples are methanogenic archaea like Methanosarcina, halophilic archaea like 

Halococcus, or cyanobacteria like Gloeocapsa. This is certainly something that could be 

studied and confirmed or rejected in terrestrial Mars simulation chambers where such 

transport processes for microbes (e.g., by dust storms) are investigated. The SR-SAG2 

report does not adequately discuss the transport of material in the martian atmosphere.  

Also this is all about forwards contamination by terrestrial life. What about Martian life adapted 

to the dust storms over billions of years? Could it develop adaptations to survive transport in dust 

storms that terrestrial life doesn’t have? I suggest native Martian life could propagate via much 

larger grains up to half a millimeter in diameter if it can survive the impact shocks of repeated 

bounces across the Martian landscape. 

Details here are for a separate paper. 

 

 

[This paper] Draft EIS says (MISTAKENLY) Mars 

life can get to Earth faster and be better 

protected in meteorites than sample tubes - their 

cites don’t support this - their main cite was about 

transfer from Mars to its innermost moon Phobos 

instead of Earth - didn’t look at sterilization during 

ejection from Mars - and specifically said that its 

conclusions should NOT be used for Mars Sample 

Return missions 

Provisional title: NASA’s draft EIS does NOT establish that life from Mars can get to Earth 

faster and better protected in a meteorite - or that ANY life on Mars can get here in this 

way 
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This is a central point in their argument (NASA, 2022eis: 3-3):  

 

The natural delivery of Mars materials can provide better protection and faster transit 

than the current MSR mission concept. 

 

But this directly contradicts their own cites. For instance the NRC in 2009 (Board et al, 2009: 

48). 

 

“The potential hazards posed for Earth by viable organisms surviving in samples is 

significantly greater with a Mars sample return than if the same organisms were brought 

to Earth via impact-mediated ejection from Mars 

 

And then later on the same page in their discussion of large scale effects 

 

... Thus it is not appropriate to argue that the existence of martian meteorites on Earth 

negate the need to treat as potentially hazardous any samples returned from Mars by 

robotic spacecraft. 

 

Their Sterlim cite makes a similar point on page 2, right near the start of the study (Board, 2019 

:2), it discusses how it would be much harder for life in Jezero crater to get to Earth on a 

meteorite. It’s own conclusions are for life that has already been ejected from Mars. So it 

concludes: 

 

Therefore, the committee finds that the content of this report and, specifically, the 

recommendations presented in it do not apply to future sample return missions from Mars 

itself 

 

Yet NASA applies that very report to its own mission without mentioning that caveat. 

 

This is used elsewhere in the draft EIS, for instance in the same section: 

 

One of the reasons that the scientific community thinks the risk of pathogenic effects 

from the release of small amounts (less than 1 kilogram [2.2 pounds]) of Mars samples 

is very low is that pieces of Mars have already traveled to Earth as meteorites. 

 

They make the same argument in the MSR safety fact sheet for the Draft Environmental Impact 

Statement (NASA, 2022msfs): 

 

The evidence includes the absence of any observed harm to Earth’s environment from 

Martian rocks that frequently fall to Earth in the form of meteorites, 

 

https://nap.nationalacademies.org/read/25357/chapter/2#5
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Indeed, if they were able to establish this, there would be no need for containment. For 

example, the last question in the decision tree for returning samples from small bodies is 

(NASEM, 1998:17) 

Does the preponderance of scientific evidence indicate that there has been a natural 

influx to Earth, e.g., via meteorites, of material equivalent to a sample returned from the 

target body? 

If the answer is yes, no special precautions are needed. This has been used correctly on other 

sample return missions, for instance with Hayabusa 1 & 2  the second sample from an artificially 

induced impact crater was similar to material transferred to Earth through natural processes, 

and so needed no special treatment (Kminek et al, 1999) (Yano et al, n.d.). 

But sadly, NASA don’t establish this due incorrect use of their cites. First a minor point, but it 

illustrates the incorrect use of cites that we find throughout this document. The draft EIS says 

that potential Mars microbes would be expected to survive ejection forces and pressure (NASA, 

2022eis: 3-3):  

 

First, potential Mars microbes would be expected to survive ejection forces and pressure 

(National Academies of Sciences, Engineering, and Medicine and the European Science 

Foundation 2019), … 

 

But the paper from 2019 which they cite to support that claim is a study on ejection of 

materials from Mars to its innermost moon Phobos, not to Earth. The paper they cite says 

explicitly that the team did NOT study sterilization during Mars ejecta formation in their 

analysis (Board, 2019 : 26) : 

 

The SterLim team did not include any sterilization during Mars ejecta formation in its 

analysis because such investigations were not requested in its study’s statement of 

work. 

 

So, the draft NASA EIS is using this 2019 paper as their only source - on a topic which the cite 

itself explicitly says it does NOT cover.  Their cite does briefly look at heating during ejection 

but it does NOT look at the far more important effects of shock. It doesn’t even mention the 

shock of ejection.  

 

There are many cites that do cover this topic so it is somewhat bizarre that NASA would select a 

cite that specifically says it doesn’t cover this topic. This is a minor issue however. 

 

More importantly, their cite in its summary also says specifically that its recommendations 

should NOT be used for a Mars sample return missions, because the MSR sampling sites are 

specifically selected to maximise sampling of evidence of extinct or extant life, and might come 

from sites that cannot mechanically survive ejection (such as the dirt and dust): (Board, 2019 :2) 

 

https://nap.nationalacademies.org/read/6281/chapter/3#17
https://nap.nationalacademies.org/read/25357/chapter/4#26
https://nap.nationalacademies.org/read/25357/chapter/2#5
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Implications for Mars sample return—What implications for a Mars sample return (MSR) 

mission can be drawn from this study and the work of the JAXA and SterLim teams? The 

main differences between MSR and Phobos/Deimos sample return missions are as follows: 

 

• MSR sampling sites will be specifically selected to maximize sampling of evidence of 

extinct or extant life, whereas materials deposited on the martian moons originates 

from randomly distributed crater impact sites. 

 

• Martian material present in a Phobos/Deimos sample would have undergone several 

physical sterilization processes (e.g., excavation by impact, collision with Phobos, 

and exposure to radiation), before it is actually sampled. Material collected on the 

surface of Mars will not have undergone such processes. 

 

• MSR material might come from sites that mechanically cannot survive ejection from 

Mars and thus any putative life-forms would de facto not be able to survive impact 

ejection and transport to space. Such mechanical limitations do not apply for material 

collected on Mars. 

 

Therefore, the committee finds that the content of this report and, specifically, the 

recommendations presented in it do not apply to future sample return missions from 

Mars itself 

 

This is a far more major issue. To expand on that issue raised by JAXA and Sterlim, the NASA 

EIS doesn’t mention that all the martian meteorites we have in our collections come came from 

at least 3 meters below the Martian surface (Head et al, 2002:1355),. The subsurface below 

about 12 cms has a uniform temperature of around 200°K or -73°C (Möhlmann, 2005:figure 2). 

They were probably thrown up into space after glancing collisions into the Elysium or Tharsis 

regions, high altitude southern uplands (Tornabene et al, 2006). With such a thin atmosphere, 

and the low temperatures at 3 meters below the surface, present day life at those altitudes is 

unlikely (except perhaps for deep subsurface geothermal hot spots). 

 

I cover this in more detail in the section (below): 

 

• Could Martian life have got to Earth on meteorites (in more detail)? Our Martian 

meteorites come from at least 3 meters below the surface in high altitude regions of 

Mars 

 

One of the papers NASA’s EIS cites, (Fajardo-Cavazos et al, 2005) was about re-entry by 

bacillus subtilis in this passage: 

 

Thus, if potentially harmful microbes were abundant on the Martian surface it is likely 

they already would have been transferred to Earth by this natural process (Fajardo-

Cavazos et al. 2005, Horneck et al. 2008, Howaxrd et al. 2013). 
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These though are papers on panspermia. What matters for sample return is whether there could 

be species on Mars that do NOT get to Earth. For panspermia what matters is if ANY species 

get from Mars to Earth. Charles Cockell showed that photosynthetic life, for instance, has many 

challenges getting from Mars to Earth and wouldn’t survive re-entry in typical position on or near 

the surface of the rock. 

 

For more about this see (below): 

 

• NASA fail to adequately consider the risks from life that can’t get to Earth on 

meteorites - in 2009, the National Research Council examined the possibility of life 

transferred on meteorites said the risk is significantly greater in a sample return mission - 

and said they can’t rule out the possibility of large scale effects in the past due to life 

from Mars  – NASA’s EIS instead claims microbes will survive transfer from Mars to 

Earth more easily in a meteorite than in a sample return mission but their sources don’t 

back this up 

 

NASA’s draft EIS also don’t look at the fireball of re-entry when it reaches Earth, which is the 

biggest hurdle for photosynthetic life. Although life inside the rock is shielded from the fireball, 

any photosynthetic life would be on the surface, not inside. 

 

This is important for the large question of whether life from Mars has ever got to Earth and if so, 

when and how often. 

Charles Cockell’s paper (which they don’t mention) said that 

though planetary exchange of photosynthesis might not be 

impossible - quite specific physical conditions and 

evolutionary adaptations are needed - and the fireball of re-

entry is the most important filter to stop photosynthetic life getting 

to Earth 

 

Charles Cockell, professor of astrobiology at Edinburgh university and author or co-author of 

numerous papers on astrobiology, is one of many authors who HAVE looked at this question.  

 

Charles Cockell looks at Chroococcidiopsis, a blue-green algae that is astonishingly resistant to 

UV, dessicationk that can remake its DNA even when chopped to pieces by ionizing radiation, 

that can live almost anywhere on Earth from the hottest driest deserts to Antarctica, tropical 

reservoirs, or even over 100 meters below the sea level (it has many alternative metabolic 

pathways that let it survive without light). It’s also one of the top candidates for an Earth microbe 

that could survive on Mars. 
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Yet he concluded that Chroococcidiopsis would find it very hard to get from Mars to Earth. This 

very versatile polyextremophile still can’t do it easily.  

Charles Cockell concludes that though some shock resistant life can be ejected from Mars and 

survive, that most photosynthetic life can’t get to Earth from Mars in this way on present day 

Mars though he leaves open the possibility that it could get here in unusual circumstances. 

(Cockell, 2008) 

QUOTE Few ecological dispersal filters are completely effective. Each of the filters 

described above could be survived on account of specific physical factors or evolutionary 

innovations.  

He found that it could survive ejection from Mars but only at the lower end of the range. 

Chroococcidiopsis doesn’t form spores and that makes it far harder for it to resist the shock of 

ejection from Mars than other hardier spore forming microbes.  

...In the case of ejection from the planetary surface, the experiments with 

Chroococcidiopsis sp. show that even these vegetative cells could survive shock pressures 

at the lower end of that documented in Martian meteorites (∼5 GPa). 

[GPa stands for Gigapascals, a unit of pressure equivalent to a billion pascals, and 1 GPa 

is a little under 10,000 times atmospheric pressure, or the pressure at a depth of 100 km 

of water. In this context it refers to a sudden increase of shock pressure which is harder to 

withstand than nstant pressure] 

To put this in context just about all the meteorites in our collections have ejection shock 

pressures larger than 5 GPa. Normally 15 GPa or larger. But from modelling about 1 in 50 

should be less than 1 GPa. 

Unlike the draft EIS, Cockell refers to planetary ejection as a “potentially strong dispersal filter” 

- many of the microbes would be killed by ejection. But at lower levels then they can be 

survivable. 

... Thus, although planetary ejection is shown experimentally to be a potentially strong 

dispersal filter, these same experiments show that shock pressures close to those required 

to achieve escape velocity, at least for Mars-like planets, can be survived even for 

vegetative phototrophs without special protection. 

But for those that survive the shock of ejection, then there’s the fireball of re-entry. It’s going to 

be hard for any photosynthetic life to survive that as they would be living on the surface or else 

maybe in cracks but still within reach of plasma that would get deep inside the meteorite.  

... The dispersal filter of atmospheric transit is the most effective dispersal filter for 

photosynthesis.  
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... Thus, the planetary exchange of photosynthesis might not be impossible, but quite 

specific physical situations and/or evolutionary innovations are required to create 

conditions where a photosynthetic organism happens to be buried deep within a rock 

during ejection to survive atmospheric transit. 

 

His argument here looks specifically at Chroococcidiopsis, one of the top candidates for a 

terrestrial microbe that might be able to survive on present day Mars.  

 

There isn’t anything in Cockell’s paper to support the thesis of the draft EIS that it is easier for 

Martian microbes to get to Earth on a meteorite than in a sample tube. (NASA, 2022eis: 3-3):  

 

The natural delivery of Mars materials can provide better protection and faster transit 

than the current MSR mission concept. 

 

Chroococcidiopsis is an example that shows that a species can be returned via a sample return 

far more easily than it could get here on a meteoroid ejected from Mars. 

 

NASA’s principle is fine. It goes back to Greenberg (Greenberg et. al, 2001) 

 

"As long as the probability of people infecting other planets with terrestrial microbes is 

substantially smaller than the probability that such contamination happens naturally, 

exploration activities would, in our view, be doing no harm. We call this concept the 

natural contamination standard." 

But it is applied incorrectly in this draft EIS.  

 
The bottom line here is that we have no examples of life that got to Earth from Mars. It may 

have happened but we don’t know for sure that it ever happened. We are reasoning 

theoretically about something we can’t currently study through observation. 

 

The reasoning we have is based on the capabilities of terrestrial life. We can test various 

terrestrial microbes extensively. However we know nothing specific about the capabilities of 

Martian life such as its ability to withstand the shock of ejection, the vacuum of space, and the 

fireball of re-entry or how likely it is to be able to get onto a meteorite that heads for Earth.  

 

We not only don’t know if ALL martian species can get to Earth on meteorites. So far we don’t 

know if ANY martian species can get to Earth on meteorites, if there is life on Mars. 
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The meteorite argument only works if ALL Martian species can get to 

Earth on meteorites –  European starlings are the invasive species in 

the Americas, not the barn swallows which can cross the Atlantic – 

natural processes can’t transfer the surface dust, dirt, ice and salts of Mars 

to Earth unaltered while sample tubes can like a small spaceship for a 

microbe 

 

Here our attention should be on the species that are NOT able to get from Mars to Earth or not 

get here easily. As an example, Barn swallows are not an invasive species in the USA while 

starlings are. European starling is an invasive bird in the Americas (US DOA, 2017).  

 

Text on graphic: Some microbes may be able to get from Mars to Earth - what matters 

for invasive species are the ones that can’t. 

Barn swallow - can cross Atlantic 

Starling - invasive species in the Americas 

Didymosphenia geminatum invasive diatom in Great Lakes and New Zealand, can’t even 

cross oceans. 

Starling photo from: (Johnstone, 2017)  
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Barn swallow photo from (Batbander, 2017)  

Didymosphenia geminata (Lyngb.) from (Schmidt, n.d.)  

 

As an example, in 2012, starlings caused $189 million in damage to crops of blueberries, wine 

grapes, apples, sweet cherries and tart cherries in the USA (US DOA, 2017).. 

Starlings also eat cattle feed and 1000 starlings can represent a loss of $200 to $400 in cattle 

feed. They can also transmit many diseases to cattle via the feeding troughs and their excrement 

corrodes iron structures including motor vehicles and iron roofs. They are also involved in 

thousands of bird strikes (US DOA, 2017). 

It’s not only birds. You might think microbes can surely all cross the Atlantic. But no. It’s far 

harder for a microbe that can only survive in fresh water to cross an ocean. There are diatoms 

in the sea too, but diatoms can’t survive long when dried out and fresh water diatoms can’t 

survive in the sea.  

Example of fresh water diatoms that can’t cross oceans on Earth 

We have invasive diatoms in the Great Lakes. Stephanodiscus binderanus is a nuisance 

species that clogs water works and introduces foul odours into the water (Spaulding et al, 2010). 

The diatom Didymosphenia geminata is an invasive species in New Zealand, possibly brought 

there on damp sports equipment. (Spaulding et al, 2010). The general public refer to 

Didymosphenia geminate as “Didymo” so we will use the same word to refer to it here. 

 

The long stalked version of Didymo is also an invasive species in the Great Lakes. The short 

stalked version doesn’t form mats and is presumed to be native to the Great Lakes. There were 

no records of the long stalked version in the Great Lakes until around 1990. After that this long 

stalked variant started to spread. It can survive and remain viable for up to 40 days in cool dark 

damp conditions, so it can be spread place to place on angling equipment, boot tops, neopreme 

waders and felt-soles. 

The mats can be up to 20 cm thick and they trap stream sediment. These can cover the bottom of 

the stream and smother native plants, insects, mollusks and algae. Streams impacted outside of 

the Great lakes see the insects decrease and an absence of fish. This may be due to a new genetic 

variant that started to spread but if so, it hasn’t been identified. These two paragraphs summarize 

/ paraphrase some of the information from (Schmidt, n.d.) 

is an example sign in New Zealand warning sailors about the risk of carrying didymo to another 

lake in New Zealand. 
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Text on sign: Your boat may now be carrying didymo. Please clean using approved 

methods. Protect our waters … 

Image from: (Thorney¿?. 2006) 

As you can see Didymo can’t even move from one lake to another in New Zealand without help 

from humans carrying it in wet gear. There is no way it could travel between planets. There are 

salt water diatoms too. But they couldn’t travel between planets on meteorites either. If there are 

diatoms on Mars they have evolved independently and can’t be directly related to terrestrial 

diatoms.  

We might even find diatoms on Mars – either preserved in gypsum, or 

perhaps living in the lakes our orbiters found beneath the polar ice 

Perseverance has found gypsum, as did Curiosity (Scheller et al, 2022)., and on Earth, gypsum 

can preserve viable diatoms for tens of thousands of years and maybe hundreds of millions of 

years (Benison et al, 2014). Diatoms evolved late on Earth which could be a reason to suppose 

they are unlikely to have evolved on Mars (Cabrol et al, 2009). However it isn’t impossible as it 

is hard to generalize given only one example from one planet. 
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So, even the idea that some day we find a viable diatom on Mars is not as far fetched as it might 

seem though it would need diatoms to evolve on Mars and for a lake to form with enough water 

for diatoms to inhabit it in the recent enough past for the diatoms to still be viable today. Such 

lakes actually do exist in present day Mars but they are deep below the ice at the poles (Orosei 

et al, 2018). David Wiliams, diatom researcher at the Natural History Museum said that 

technically diatoms could survive there though he says a more interesting question is whether 

we’d even be able to identify it as life if it originated on Mars (Davis, 2018): 

'Yes, technically tiny life forms such as diatoms and cyanobacteria could survive in these 

environments. But that is not the question we should be asking. 

'A more interesting question is whether we would know what we're looking at, even if we 

did find something in the lake. Would we even be able to identify it as life, if it originated 

on Mars itself?'  

 

So, though it’s not the most likely example for Jezero crater, it’s not impossible we eventually 

find diatoms on Mars, or maybe some other form of life adapted to a similar life style, and the 

chance it is able to get to Earth on a meteorite may be very low. 

Chroococcidiopsis as an example of a species that wouldn’t survive 

transfer by impacts from modern Mars based on an analysis by Charles 

Cockell 

Some species will be better able than others to withstand the shock of ejection from Mars, the 

cold and dry and complete vacuum of the transition through space, then the fireball of re-entry to 

Earth. As an example, most photosynthetic life is killed in this process.  

The first challenge is the shock of ejection. Microbes are suddenly accelerated from rest to 

escape velocity in a fraction of a second. The microbes can be destroyed by cell rupture or by 

DNA damage. All cells of Chroococcidiopsis are killed at a shock pressure of 10 GPa 

(Nicholson, 2009). To put this in context, ALH84001 experienced a shock of ejection of ∼35 − 

40 GPa. The Nahkalites were least shocked at 15 to 25 GPa. This is still too much for 

Chroococcidiopsis (Nyquist, 2001) 

 

The microbe also has to survive the fireball of re-entry to Earth. 

 

Cockell inculcated an artificial gneiss rock with Chrooccoccidiopsis at a depth where it occurs 

naturally, and affixed it to the re-entry shield of a Soyuz rocket. None survived re-entry, nor did 

any organics.  

 

Cockell concluded that it might not be impossible for photosynthetic life to get to Earth from 

Mars, but it would need an extraordinary combination of events (Cockell, 2008) 
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So in this analogy, most photosynthetic life on Mars would be more like the European starling 

than the Swallow, wouldn’t be able to get to Earth on meteorites except possibly in rare very 

large impacts, and most likely in the early solar system. 

 

Then, the rocks we have in our Martian meteorite collections all come from at least three meters 

below the surface (Head et al, 2002) . They were probably thrown up into space after glancing 

collisions into the Elysium or Tharsis regions, high altitude southern uplands (Tornabene et al, 

2006). The atmosphere for these high altitude regions on Mars is thin, making ejection to Earth 

easier. The subsurface below about 12 cms has a uniform temperature of around 200°K or -

73°C (Möhlmann, 2005:figure 2). With such a thin atmosphere, present day life at those 

altitudes is unlikely (except perhaps for deep subsurface geothermal hot spots). 

 

Larger impacts in the recent geological past could send material to Earth from other potentially 

more habitable parts of Mars. However: 

 

● Many proposed habitats are in surface layers of dirt, ice and salts. These would 

likely never get into space 

 

● Other proposed habitats are millimeters below the surface of rocks. These layers 

would ablate away during entry into the Earth's atmosphere 

 

Life on Mars could be extremely localized to only a few square kilometers over the entire 

planet, for instance, only to the RSL's, or only above geological hot spots, making it less likely 

that the habitats are hit by an asteroid able to send material all the way to Earth in the large 

chunks needed for protection from cosmic radiation during the transfer.  

 

Yet life from distant habitats on Mars may be able to get to Jezero crater in dust storms. Of 

course dust storms can’t transport Martian spores or propagules to Earth and the dust can’t be 

transported to Earth. We have no samples of Martian dust or Martian surface salts or ice in our 

meteorite collections and these couldn’t get to Earth even in the early solar system. 
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JAXA team’s analysis of their sample return from 

Phobos in 2029 used the natural contamination 

standard correctly and is a much simpler 

analysis than for NASA’s mission since any 

viable microbes that reach Phobos already left 

Mars – though they explain that this does not apply 

to the Mars sample return study as we already 

mentioned 

 

Japan also plan a Mars sample return from the Moon of Phobos in 2029. Since JAXA are not 

returning samples from the Martian surface their calculation is much simpler. Any microbes that 

get to Phobos have already got into rocks below the surface in the high dry southern uplands at 

the location of Zunil crater, and survived ejection from Mars.  

 

As they themselves explain this approach does NOT apply to a sample return from the Martian 

surface see above 

 

• Draft EIS says (MISTAKENLY) Mars life can get to Earth faster and be better protected 

in meteorites than sample tubes - their cites don’t support this - their main cite was about 

transfer from Mars to its innermost moon Phobos instead of Earth - didn’t look at 

sterilization during ejection from Mars - and specifically said that its conclusions should 

NOT be used for Mars Sample Return missions 

 

There may be a minor error in JAXA’s analysis but one that doesn’t seem likely to change their 

conclusion. This is to do with how their analysis deals with the difference in heating between the 

surface and exterior of the rocks during re-entry. 

 

They make a minor adjustment to survival %s due to this effect (Board, 2019 : 40)..  

 

Next, Phobos organisms needed to survive impact on a solid surface at cosmic 

velocities. About one in 10⁴ microbes are expected to survive. Somewhere between 10 

and 100 percent of the microbes in a sample survive passage through Earth’s 

atmosphere. This survival rate comes from the numerical analysis undertaken by the 

JAXA team. 

 

With an atmospheric entry velocity of ~5 km/s, the JAXA team used the same 

atmospheric sterilization model that it used for Mars and the same sterilization criterion 

https://nap.nationalacademies.org/read/25357/chapter/5?term=773#40
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(i.e., heating to 773 K for 0.5 second) to show that meteorites >10 cm across suffer a 

survival rate of between 20 and 80 percent. This fraction is somewhat misleading, as 

parts of the Mars rock are strongly heated and sterilized, while other parts of the rock 

remain unheated and unscathed 

 

So, they converted a survival rate of 20% to 80% into a survival rate of 10% to 100% because of 

the uneven heating of the rock. 

 

However, this adjustment may not be enough to take account of the growing habits of 

photosynthetic life which leads it to colonize the surfaces of rocks or cracks that sunlight can 

penetrate which the plasma of the fireball of re-entry can also penetrate which can lead to a 

survival rate for photosynthetic life of 0%, as we saw above in: 

 

• Charles Cockell’s paper (which they don’t mention) said that though planetary exchange 

of photosynthesis might not be impossible - quite specific physical conditions and 

evolutionary adaptations are needed and the fireball of re-entry is the most important 

filter to stop photosynthetic life getting to Earth 

 

 

However, it may not be a serious error in this case. As we’ll see in the next section, it seems 

likely from our meteorite collections and modelling that rocks ejected from Mars for the last 20 

million years come from at least 3 meters below the surface of Mars. 

 

So, this doesn’t seem to be a significant issue since photosynthetic life is highly unlikely at such 

depths, and if it does occur there, its growing patterns would be similar to other life at such 

depth. 

 

The polyextremophile blue-green algae Chroococcidiopsis is able to grow in complete darkness 

using a hydrogen-based lithoautotrophic metabolism with viable populations found over 600 

meters below the surface (Puente-Sánchez et al, 2018) and in another case 750 meters below 

the Atlantic sea bed (Li et al, 2020). 

 

However even if a Mars analogue polyextremophile got into rocks by this method, for instance in 

a geothermal hot spot sampled by Zumil crater, its colonization patterns would resemble other 

microbes living in the same habitat. As it wouldn’t be using light to grow, Cockell’s argument that 

it would preferentially colonize the surfaces or cracks in ejected fragments of rock no longer 

applies. 

 

So, the reasoning seems sound in this case, and this seems to be a minor omission which 

wouldn’t change the assessment of a Phobos sample return as unrestricted Category V, i.e. an 

unrestricted sample return. 
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Could Martian life have got to Earth on meteorites (in more 

detail)? Our Martian meteorites come from at least 3 meters 

below the surface in high altitude regions of Mars 

If Earth frequently encounters Martian life, then we have no need to protect Earth with special 

precautions, by Greenberg’s “Natural Contamination Standard” (Greenberg et al, 2001).  

 

However, our Martian meteorites all come from at least 3 meters below the surface (Head et al, 

2002:1355), and left Mars over a period spanning 20 million years. They were probably thrown 

up into space after glancing collisions into the Elysium or Tharsis regions, high altitude southern 

uplands (Tornabene et al, 2006). The atmosphere for these high altitude regions on Mars is thin, 

making ejection to Earth easier. The subsurface below about 12 cms has a uniform temperature 

of around 200°K or -73°C (Möhlmann, 2005:figure 2). With such a thin atmosphere, present day 

life at those altitudes is unlikely (except perhaps for deep subsurface geothermal hot spots).  

So it seems unlikely that any life has got to Earth in the last few million years. The Martian 

meteorites we have are from one of the least likely to be habitable regions on Mars, the sub-

surface of the high altitude Martian uplands. 

It is not totally impossible life could get into the Martian meteorites, but would require a high 

measure of luck. Some Martian volcanoes have been active in the geologically recent past, as 

recent as 2 million years ago. Olympus Mons also shows signs of glacial activity as recent as 

four million years ago which suggests it likely has ice protected beneath the dust on its slopes. . 

(Neukam et al., 2004) 

A lucky asteroid impact on Mars could throw up material from a subsurface cave, or a 

geothermal hot spot, or fumarole. But such events would surely be rare. 

So, it’s possible that some exceptionally hardy life has got here, even in geologically recent 

times. Perhaps life from geothermal vents after a lucky strike of a meteorite into a geologically 

active geothermal system on the flanks of Olympus Mons. 

It’s not impossible that a lucky asteroid impact could send back life from Mars from a cave or a 

geothermal vent just below the surface, but most wouldn’t send any life this way. 

Just as there are many species on Earth that could never get to Mars on a meteorite, if Mars has a 

diversity of microbial species, there are likely to be many species on Mars that could never get to 

Earth that way. 

Larger impacts could send material to Earth - but unlikely to transfer fragile 

surface dirt, ice and salts 

Larger impacts in the recent geological past could send material to Earth from other potentially 

more habitable parts of Mars. However: 
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● Many proposed habitats are in surface layers of dirt, ice and salts. These would 

likely never get into space 

 

● Other proposed habitats are millimeters below the surface of rocks. These layers 

would ablate away during entry into the Earth's atmosphere 

 

● Life on Mars could be extremely localized to only a few square kilometers over the 

entire planet, for instance, only to the RSL's, or only above geological hot spots, making 

it less likely that the habitats are hit by an asteroid able to send material all the way to 

Earth in the large chunks needed for protection from cosmic radiation during the transfer.  

. 

It was easier for Mars to exchange life with Earth in the early solar system. However even the 

ejecta from an impact into a Martian ocean need not necessarily transmit life to Earth.  

[2nd separate paper could start here] NASA’s 

draft EIS cites previous research incorrectly and 

as a result fail to properly consider the potential 

for large scale impacts on the environment  

Provisional title: NASA’s draft EIS for samples from Mars does NOT overturn previous 

warnings of the potential for likely low risk of large scale harm for public health or the 

environment – in some scenarios life can NEVER be returned safely from Mars to Earth – 

in other scenarios Martian life doesn’t exist, or is harmless or beneficial – we need to 

know which scenario we have in our solar system 

 

NASA  don’t cite the European Space Foundation study from 2012 study (Ammann et al, 

2012:PG) at all and don’t cite the section of the 2009 National Research Council study on large 

scale impacts (Board et al, 2009: 48). 

 

Not only that, the submitted documents make statements that go against the conclusions of the 

peer reviewed literature on the topic. Example, let’s look at this passage from the MSR safety 

fact sheet for the Draft Environmental Impact Statement (NASA, 2022msfs): 

 

The question of whether samples from Mars could present a hazard to Earth’s biosphere 

has been studied by several different panels of scientific experts from the United States 

and elsewhere over the past several decades. 

 

[this much is true] 
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The reports from these panels have found an extremely low likelihood that samples 

collected from areas on Mars like those being explored by Perseverance could possibly 

contain a biological hazard to our biosphere. 

 

[this is not an accurate summary] 

 

The most recent of the thorough Mars sample return studies, from the European Space 

Foundation in 2012: 

 

“The risks of environmental disruption resulting from the inadvertent 

contamination of Earth with putative martian microbes are still considered to be 

low. But since the risk cannot be demonstrated to be zero, due care and caution 

must be exercised in handling any martian materials returned to Earth” 

 

NASA’s MSR Safety fact sheet for the draft EIS again (NASA, 2022msfs): 

 

The evidence includes the absence of any observed harm to Earth’s environment from 

Martian rocks that frequently fall to Earth in the form of meteorites, 

 

National Research Council report in 2009 said (Board et al, 2009: 48).: 

 

Section: Potential for large scale effects [of a Mars Sample Return] 

“The potential hazards posed for Earth by viable organisms surviving in samples 

is significantly greater with a Mars sample return than if the same organisms were 

brought to Earth via impact-mediated ejection from Mars 

 

…Certainly in the modern era, there is no evidence for large-scale or other 

negative effects that are attributable to the frequent deliveries to Earth of 

essentially unaltered Martian rocks. However the possibility that such effects 

occurred in the distant past cannot be discounted.” 

 

NASA’s MSR Safety fact sheet for the draft EIS again (NASA, 2022msfs): 

 

 and the fact that the Mars samples being gathered by NASA’s Perseverance Mars rover 

are from the frst few inches of a planetary surface that is very dry and highly irradiated 

naturally by the Sun, which would sterilize all known active biology. 

 

The Review from 2015: (Board, 2015) 

 

There are many examples of small-scale and microscale environments on Earth … 

that can host microbial communities, including biofilms, which may only be a few 

cell layers thick. The biofilm mode of growth, as noted previously, can provide 

affordable conditions for microbial propagation despite adverse and extreme 

conditions in the surroundings. 
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NASA fail to adequately consider the risks from life that can’t 

get to Earth on meteorites - in 2009, the National Research 

Council examined the possibility of life transferred on 

meteorites said the risk is significantly greater in a sample 

return mission - and said they can’t rule out the possibility of 

large scale effects in the past due to life from Mars  – NASA’s EIS 

instead claims microbes will survive transfer from Mars to Earth 

more easily in a meteorite than in a sample return mission but 

their sources don’t back this up 

 

Let’s look at the first of these two statements NASA use to support their conclusion that the 

activity is very low risk, from the MSR safety fact sheet from this page: 

 

The evidence includes the absence of any observed harm to Earth’s environment from 

Martian rocks that frequently fall to Earth in the form of meteorites, 

 

Then in the draft EIS: 

 

One of the reasons that the scientific community thinks the risk of pathogenic effects 

from the release of small amounts (less than 1 kilogram [2.2 pounds]) of Mars samples 

is very low is that pieces of Mars have already traveled to Earth as meteorites. 

 

… 

 

The natural delivery of Mars materials can provide better protection and faster transit 

than the current MSR mission concept.  

 

  

They cite the NRC report from 2009 but not on this point. The National Research Council DID 

look into this question in their "Assessment of Planetary Protection Requirements for a Mars 

Sample Return". However their conclusion was the opposite of NASA’s draft EIS summary. 

 

They were unable to rule out the possibility that life from Mars could have caused past mass 

extinctions on Earth 

 

The NRC found that most of the meteorites that get to Mars are sterilized during transit. But 

about 1% get here within 16,000 years and 0.01 percent within 100 years (note none of the 

meteoirites we have from Mars left the planet less than hundreds of thousands of years ago) 

 

This is from Earth (Board et al, 2009: 48). 

https://www.regulations.gov/document/NASA-2022-0002-0002
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"Transit to Earth may present the greatest hazard to the survival of any microbial 

hitchhikers. Cosmic-ray-exposure ages of the meteorites in current collections indicate 

transit times of 350,000 to 16 million years. However theoretical modeling suggests that 

about 1 percent of the materials ejected from Mars are captured by Earth within 16,000 

years and that 0.01 percent reach Earth within 100 years.  

 

NRC continue that survival of organisms in meteorites is plausible. If they can be shown to 

survive ejection, entry and impact they can be expected to transfer from Mars to Earth  (Board 

et al, 2009: 48).. 

 

“Thus, survival of organisms in meteorites, where they are largely protected from 

radiation, appears plausible. If microorganisms could be shown to survive conditions of 

ejection and subsequent entry and impact, there would be little reason to doubt that 

natural interplanetary transfer of organisms is possible and has, in all likelihood, already 

occurred.  

 

However that is the big unknown. Can life from present day Mars get onto the meteorites, be 

ejected from Mars, and then survive the fireball of re-entry to Earth. 

 

The NASA EIS says this (NASA, 2022eis: 3-3): 

 

First, potential Mars microbes would be expected to survive ejection forces and pressure 

(National Academies of Sciences, Engineering, and Medicine and the European Science 

Foundation 2019), and, within the interior portions of the rocks, would be protected from 

elevated radiation levels, and large temperature variations that meteorite surfaces 

experience during the transit from Mars to Earth (Mileikowsky 2000).  

 

The big hurdles for transfer of life from Mars are the shock of ejection, the fireball of exit from 

Mars the cold, vacuum and ionizing radiation of the passage to Earth, and the fireball of re-

entry. 

 

Their cite on ejection pressures is about transport of materials from Mars to the Martian moons 

for an assessment of sample return missions from those moons. It does NOT  look at 

sterilization during Mars ejecta formation. This is what they say  (Board, 2019 : 26).  : 

 

The SterLim team did not include any sterilization during Mars ejecta formation in its 

analysis because such investigations were not requested in its study’s statement of 

work. 

 

It also looks at only one impact, the ejection from Zunil crater as any ejection from more than a 

million year ago would not leave surviving microbes close to the surface of the Martian moons 

due to the ionizing radiation. 

 

https://nap.nationalacademies.org/read/25357/chapter/4#26
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It does mention shock heating. It didn’t look at the acceleration during ejection from Mars. But 

the sudden acceleration actually kills most microbes. I cover that below 

 

Second, a significant fraction of natural transits occur on trajectories that require as little 

as 6 months where the material returned by the MSR mission concept would be in flight 

for Mars Sample Return Campaign Programmatic EIS over 18 months (Gladman 1997). 

Thus, if potentially harmful microbes were abundant on the Martian surface it is likely 

they already would have been transferred to Earth by this natural process (Fajardo-

Cavazos et al. 2005, Horneck et al. 2008, Howard et al.2013). 

 

Actually the meteorites we have on Earth all came from at least 3 meters below the surface of 

Mars. The proposed habitats for present day Mars are on the surface in dust and brine layers. 

How is life in those layers going to get into a rock at least 3 meters below the surface?  

 

Then there’s the shock of ejection and the fireball of re-entry to Earth. 

• s 

NRC 2009 report says the potential for LARGE-SCALE negative 

effects on Earth’s inhabitants or environments by a returned martian 

life form appears to be low, but is not demonstrably zero – draft EIS 

says any potential environmental effects would not be significant – i.e. that 

there is no significant risk of ANY environmental effects 
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What the National Research Council said: The committee found that the potential for 

large-scale negative effects on Earth’s inhabitants or environments by a returned 

martian life form appears to be low, but is not demonstrably zero 

 

Although exchanges of essentially unaltered crustal materials have occurred routinely 

throughout the history of Earth and Mars, it is not known whether putative martian 

microorganisms could survive ejection, transit and impact delivery to Earth or would be 

sterilized by shock pressure heating during ejection or by radiation damage accumulated 

during transit. Likewise, it is not possible to assess past or future negative impacts 

caused by the delivery of putative extraterrestrial life, based on current evidence. 

(Board et al, 2009: 48).. 

 

What NASA’s draft EIS says: The relatively low probability of an inadvertent reentry 

combined with the assessment that samples are unlikely to pose a risk of significant 

ecological impact or other significant harmful effects support the judgement that the 

potential environmental impacts would not be significant.  

(NASA, 2022eis: 3-3): 

 

Going back to the NRC report, they continue that any microbes in martian materials transported 

to Earth in a sample return mission face very different conditions from those in meteorites  

(Board et al, 2009: 48).. 
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It should be noted that martian materials transported to Earth via a sample return 

mission will spend a relatively short time (less than a year) in space - all the while 

protected in containers. (Note that researchers have yet to discover compelling evidence 

of life in any meteorite, martian or otherwise.) Thus the potential hazards posed for Earth 

by viable organisms surviving in samples is significantly greater with a Mars sample 

return than if the same organisms were brought to Earth via impact-mediated ejection 

from Mars." 

 

They go on to say that it is simply not possible to determine whether viable Martian life forms 

have already been delivered to Earth. 

 

They also say that though there is no evidence of large scale or other negative effects (such as 

extinctions) in the modern era due to the frequent deliveries of Martian rocks, that it is not 

possible to discount such effects in the distant past. (Board et al, 2009: 48). 

 

"Despite suggestions to the contrary, it is simply not possible, on the basis of current 

knowledge, to determine whether viable Martian life forms have already been delivered 

to Earth. Certainly in the modern era, there is no evidence for large-scale or other 

negative effects that are attributable to the frequent deliveries to Earth of essentially 

unaltered Martian rocks. However the possibility that such effects occurred in the distant 

past cannot be discounted.” 

 

That’s in their section 5, Potential for Large Scale Effects, page 48:  

 

I discuss this passage below in: 

 

• The Great Oxygenation Event which transformed Earth’s atmosphere and oceans 

chemically gives a practical example of a way life from another Mars-like planet could in 

principle cause large scale changes to an Earth-like planet 

•  

NASA’s draft EIS summarizes this INCORRECTLY as (NASA, 2022eis: 3-3): 

 

 

The reports from these panels have found an extremely low likelihood that samples 

collected from areas on Mars like those being explored by Perseverance could possibly 

contain a biological hazard to our biosphere. 

 

… 

 

The evidence includes the absence of any observed harm to Earth’s environment from 

Martian rocks that frequently fall to Earth in the form of meteorites 

 

https://nap.nationalacademies.org/read/12576/chapter/7#48
https://nap.nationalacademies.org/read/12576/chapter/7#48
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Then in the draft EIS they say that the potential environmental impacts from a sample release 

would not be significant (NASA, 2022eis: 3-16): 

 

The MSR Campaign is the first sample return mission to be classified as Restricted 

Earth Return, since the term was defined. (The Apollo 11, 12, and 14 missions were 

subjected to quarantine upon return until lunar samples were assessed and found to 

pose no hazard.) Prior mission sample return missions at the UTTR (e.g., Stardust, 

Genesis, and the upcoming return of OSIRIS-Rex) were all classified as Unrestricted 

Earth Return.  

 

The human health and safety analysis focuses on the precautions taken to provide 

backward planetary protection. However, the probability of inadvertent or off-39 

nominal reentry would be similarly small as those evaluated for these earlier missions 

(NASA 1998, NASA 2001, NASA 2013), and as stated previously, the samples are 

unlikely to pose a risk of significant ecological impact or other significant harmful effects 

should there be a sample release. The relatively low probability of an inadvertent reentry 

combined with the assessment that samples are unlikely to pose a risk of significant 

ecological impact or other significant harmful effects support the judgement that the 

potential environmental impacts would not be significant. 

 

This is all that they say on the topic. There is no further discussion of the potential for large 

scale effects and this particular sentence isn’t cited to any other source. 

NASA’s draft EIS has no mention of ANY potential for large scale 

effects on humans or other lifeforms of accidental release on Earth 

 

Another striking omission is that there is no mention of potential effects of accidental release on 

humans or animals or plants or any other life even locally.  

 

This is extensively studied in the literature on the topic (Pugel et al, 2020): 

 

An extraterrestrial pathogen lacks existing diagnostic testing and medical management 

protocols. Future health emergency response measures may need to incorporate 

knowledge deficits into plans and exercises, and all those responding, including 

healthcare workers and first responders, will need education and training in advance of 

the spacecraft's return. 

The lack of knowledge surrounding extraterrestrial pathogens, from disinfection to 

incubation periods, presents a novel situation for which current public health and 

healthcare emergency preparedness efforts have not been developed. The spectrum of 

biological threats (natural outbreak, intentional attack, and laboratory accident) does not 

include a novel pathogen of unknown biological makeup. 
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There is no discussion of precautions to be taken if there is an accidental release, or if a 

technician in the facility is accidentally exposed to the samples. 

 

This is all they say on the matter (NASA, 2022eis :3-18) 
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Overall Health and Safety Impacts 

 

Health and safety impacts are mitigated through the prevention of backward 

contamination, which is provided by the low probability of failure of the engineered 

containment systems intended to provide containment of the Mars sample material 

under all circumstances. Implementation of actions that are in line with accepted 

procedures used for the isolation of biohazard materials provides additional protection 

against the release and spread of such material. Given implementation of these 

precautions and given that Mars materials are not expected to have significant 

pathological impacts if released into the Earth’s biosphere, on-site mission preparation 

(to include testing, rehearsals, and landing site preparation), EES landing, and EES 

recovery operations are expected to have minimal direct and/or indirect impacts on 

human health at the UTTR, the Det-1 location, or in general. 

 

And claims that the risk of accidental release from a BSL-4 can be described as zero. (NASA, 

2022eis: 3-14): 

While not completely analogous,the results of previous NEPA analyses for BSL-4 

facilities have concluded that the hazards associated with the operation of BSL-4 

facilities are expected to be minimal. Analyses performed in support of recent NEPA 

documents conclude that the risk from accidental release of material from a BSL-4, even 

under accident conditions that include the failure of protective boundaries (e.g., reduced 

effectiveness of ventilation filtration systems) are minute and can be described as zero 

(NIH/DHHS 2005). 

An alternative release path resulting from the contamination of workers leading to direct 

contact with others (members of the public) was also analyzed. Qualitative risk 

assessments for this mode of transmission have shown that the risk to the public is 

negligible. (NIH/DHHS 2005, DHS 2008) 

 

Yet when considering the possibility of studying the samples with humans in orbit they say there 

is concern about potential health impact (NASA, 2022eis: 2-26): 

  

Additionally, a positive result from the SSAP (Site Safety Assessment Protocol) 

represents a potential hazard to crew health within a small, enclosed system, plus a 

contaminated facility that will eventually need to be returned to Earth (or will fall to Earth 

if there is a system failure). 

 

So they claim a potential hazard to crew health if the samples are studied in orbit, but minimal 

hazard to human health in case of an accidental release once the samples are returned to 

Earth. 
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The only occurrence of the word quarantine is in a reference to the Apollo mission (NASA, 

2022eis: 3-15): 

 

The MSR Campaign is the first sample return mission to be classified as Restricted 

Earth Return, since the term was defined. (The Apollo 11, 12, and 14 missions were 

subjected to quarantine upon return until lunar samples were assessed and found to 

pose no hazard.) 

 

During the Apollo sample returns, there were several times technicians were accidentally 

exposed to the samples and had to isolate (Mangus et al, 2004:51). For instance, two 

technicians had to go into isolation after a leak was found in a sample handling glove for Apollo 

11 (Meltzer, 2012:485), and then 11 technicians had to go into isolation in 1969 when a small 

cut was found in one of the gloves during preliminary examination of one of the samples 

returned by Apollo 12 (Meltzer, 2012:241).  

The draft EIS doesn’t discuss what happens if technicians are similarly exposed to the sample 

materials on Earth, even though they raise it as an issue for astronauts studying the samples in 

orbit. 

A carefully peer reviewed EIS wouldn’t have internal inconsistencies like this. 

 

The draft EIS does however describe a need to take precautions at the landing site. They plan 

to decontaminate the landing site with chlorine dioxide such as is used in drinking water and 

aldehydes (NASA, 2022eis: 3-35): 

 

After removal of the EES, the entire landing site (consisting of the impact area and 

extent of ejecta) may be decontaminated as a precautionary measure 

 

The process of retrieving the EES and placing it into the vault would be assumed to 

generate potentially hazardous biological waste until demonstrated otherwise. As 

described earlier, the process of placing the EES into containment and then inserting it 

into the vault would be conducted as in past missions. All the systems used, including 

personnel protective gear, would be assumed to be contaminated and would either be 

decontaminated or simply discarded as hazardous waste. Wastes could include plastics 

and clothing. Any liquids used in the decontamination process would be absorbed onto 

solids prior to disposal. 
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Chlorine dioxide is a disinfectant. When added to drinking water, it helps destroy 

bacteria, viruses and some types of parasites.  

 

Aldehydes are highly effective, broad-spectrum disinfectants, which typically achieve 

sterilization by damaging proteins. Aldehydes are effective against bacteria, fungi, 

viruses, mycobacteria and spores. 

 

They explain (NASA, 2022eis: 3-35): 

 

NASA believes these types of decontaminates would be effective given the assumption 

that any putative Mars life forms would be similar to “life as we know it” with a water-

mediated carbon-based biochemistry, and that there would not be any “unique” 

biohazards associated with the Mars samples 

 

This surely needs more thorough study for the special case of extra-terrestrial life from Mars. 

 

These methods rarely achieve 100% reduction. From their cite, this shows the effect of 24 hours 

of high concentrations of CLO2. It has almost no effect on the top soil or below a depth of one 

inch below the surface. It is much more effective on clay or sand with a 100 million fold 

reduction (EPA, 207:36) 

 

 
 

Also this is for reduction in “colony forming  units” in other words cultivable spores. Many 

microbes are uncultivable. Also Martian life is adapted to surface conditions with high 

concentrations of perchlorate. They may well be more resistant to chlorine dioxide than 

terrestrial life.  
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Also, what are the contingency plans if Martian life has got into the microbiome of a human, or 

an insect flies away with it, or it gets blown away from the site in dust in the atmosphere,  or into 

groundwater? 

 

And then – if these precautions are needed for the landing site, why are they not also needed in 

case of an accidental breach of containment at the BSL-4 facility? 

 

This raises many questions that would likely be asked during a peer review of the draft EIS by 

independent experts. 

 

I cover issues of effect of release of the sample on humans and of quarantine in in  my preprint 

(Walker, 2022b) under: 

 

• Public health challenges responding to release of an extraterrestrial pathogen of 

unfamiliar biology 

• Failure modes for sample containment 

• Complexities of quarantine for technicians accidentally exposed to sample materials 

NASA’s draft EIS gives no quantitative answer to concerned 

questions from the general public about how low the risk is 

for large scale effects from a sample return from Mars 

handled according to the methods they have outlined – is it 1 

in thousand or 1 in a million or 1 in a billion? They just say it is 

impossible to give a 100% guarantee which doesn’t answer the 

question 

 

This is one of the main questions from the public. Yet NASA don’t give anything like a 

satisfactory answer to it. This answer alone is likely to lead to litigation once the document 

reaches general public awareness if NASA can’t  improve on it. 

 

Example, the draft EIS gives this as one of the main questions from the public  (NASA, 2022eis: 

3-3): 

 

When the consequences of a failure are so great, a 100% guarantee should be required. 

 

The NASA factsheet “The Safety of Mars Sample Return” does address this issue. 

“Panels have found an extremely low likelihood that samples collected from areas on 

Mars like those being explored by Perseverance could possibly contain a biological 

hazard to our biosphere.”  

https://osf.io/rk2gd/
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Just how low is “low likelihood”? Is NASA’s goal specification to prevent accidental 

release of the Mars samples 1 in a thousand? 1 in a million? 1 in a billion? 

 

This is their answer to that question: 

 

No outcome in science and engineering processes can be predicted with 100% 

certainty. The safety case for MSR safety is based on redundant containment supported 

by rigorous testing and analysis, the extensive experience of NASA and ESA with very 

similar activities over the past three decades, as well as independent reviews of program 

plans by external expert 

 

This and other answers in the draft EIS shows clearly the results of 

not setting up any advanced planning and oversight agency with 

experts in legal, ethical and social issues tasked with interfacing 

NASA decisions and the general public’s questions as the top priority 

– as recommended in numerous papers on Mars sample return missions 

 

Margaret Race made a relevant point  here. She says scientists are likely to focus on (Race, 

1996) 

1. technical details 

2. mission requirements 

3. engineering details 

4. costs of the space operations and hardware 

General public are likely to focus on 

• risks and accidents 

• whether NASA and other institutions can be trusted to do the mission 

• worst case scenarios 

• whether the methods of handing the sample, quarantine and containment of any Martian 

life are adequate 

We see the results of this different focus in the report. It is just not something that greatly 

occupies the minds of the engineers and scientists who work on space projects, yet it is the main 

thing on the minds of members of the public. 

This engineering type answer which deflects from the question without answering it shows up 

issues with their failure to set up the mechanism to deal with public responses, as 

recommended by numerous sample return studies. 
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• Rummel et al recommend a planning agency set up in advance with experts in legal, 

ethical and social issues - Uhran et al recommend an advanced planning and oversight 

agency set up two years before the start of the legal process – and the ESF 

recommends an international framework should be set up, open to representatives from 

all countries  - NASA don’t seem to have done any of this yet 

 

 

Again it’s understandable that engineers whose minds are focused on solving numerous 

complex technical difficulties with the mission might not understand why there is need to set up 

a planning and oversight agency two years before the start of the legal process. This wouldn’t 

help solve their engineering problems in any way whatsoever. 

But for the general public, it is absolutely essential for the issues that matter most to them. 

Illustration of a more informative answer to this question from the 

general public about how low the risk is - it can’t be quantified but is 

likely very low for the proposed action – since Perseverance is not 

searching for microhabitats in Jezero crater and will return hardly any dust 

– the level of risk is similar to the risk of building a house without a smoke 

detector – rather than the risk off outdoor fireworks in your kitchen – but for 

a house NASA share with nearly 8 billion other people when almost all 

don’t know NASA is considering removing the smoke detectors and they 

have no say in the decision 

I can help here based on my experience working full time (on my own initiative) as a voluntary 

fact checker for scared people. I provide this response, to help anyone who might read this 

document and panic and expect the worst. E.g. jump instantly to fear of human extinction. This 

section has been tested with scared people and they say that it helps. For instance for members 

of the public who are not very strongly grounded in science, it is important to supplement your 

answers with meaningful analogies that they can relate to. 

 

A good analogy, it's more of the order of building a house without a smoke detector - but a 

house you share with nearly 8 billion people - than setting off outdoor fireworks in the kitchen. 

This smoke detector analogy is from Margaret Race from her contribution "No Threat? No 

Way"  in the Planetary Report " (Rummel et al., 2000). In this cite, she is responding to Robert 

Zubrin, president of the Mars society who thinks we don’t need to protect Earth from a Mars 

sample return. She wrote in 2000: 

"He's confident in our impressive technological prowess; he's raring to go and doesn't 

want anything to slow down or stop our exploration of Mars - especially not burdensome 

regulations based on very small risks and scientific uncertainty. Yet when he suggests 

that there's no need for back contamination controls on Mars sample return missions, 
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he's advocating an irresponsible way to cut corners. If he were an architect, would he 

suggest designing buildings without smoke detectors or fire extinguishers?                                                                                      

 

There are many hurdles for life on Mars to jump to get to Earth. 

• The chance of present day life in the geological samples or in the few dust spores 

attached to the containers is very low.  
•  
• The ultramicrobacteria has to be dislodged from the sample 
• Then to escape from a BSL-4 facility it has to be a very small microbe such as an 

ultramicrobacteria – or escape due to improper handling. The habitats on Mars may 
favour ultramicrobacteria because of the low levels of nutrients, ultramicrobacteria have 
a higher surface to volume ratio so can take up more nutrients per volume with nutrients 
that diffuse at the same rate through the cell membrane. 

• Then there's whether it is pre-adapted to survive on Earth. 

An example of a worst case microbe to escape is one that can survive in the rivers and the sea 
and ends up in water outside the facility, or one that can spread in viable spores in airborne 
dust. 

The easiest case to contain is a microbe with very specialist capabilities that has almost no 

habitats on Earth it can survive in. It may be possible to stop it spreading even if it escapes. 

 

You can argue both ways. 

 

Mars has conditions sufficiently like Earth on Mars so it's not impossible and the environment 

would encourage polyextremophiles able to withstand almost anything it encounters. And for a 

microbe a droplet of brine may be much the same whether it is on Mars or on Earth. 

 

On the other hand Earth has nothing that closely resembles the Martian habitats and it might be 

that Martian life depends on things Mars has and Earth doesn't such as the perchlorates, say. 

 

As an example, suppose Martian life depends on perchlorates or chlorates in its habitat just as 

sea life depends on salty water on Earth. In that case it will be easy to stop. 

 

Suppose though that we return a polyextremophile such as an analogue of Chroococcidiopsis 

which can survive almost anywhere on Earth and can probably survive in almost any Martian  

habitat suitable for terrestrial life if such exist. That would be impossible to stop once it leaves 

containment.  

 

Most astrobiologists seem to say things like the chance of returning harmful life is low but not 

impossible. 

 

I don't see any reasoning for it being a high probability. 
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But low could be 1 in 10 or 1 in 1000 or anything between or more or less 

 

Large scale effects will be low probability, though nobody can attach a number to it due to us 

never encountering any other form of life other than terrestrial life. 

 

Cockell has suggested (amongst other possible scenarios) that if early Martian life went extinct, 

Mars could now have uninhabited habitats, i.e. which life could colonize but with nothing left by 

way of early Martian life to colonize them  (Cockell, 2014). 

 

For Jezero crater there are several proposed microhabitats but one example would be the 

possibility of biofilms using the Curiosity brines. For this, see: 

 

• NASA fail to consider at all the potential for microhabitats in Jezero crater not detectable 

from orbit such as the Curiosity brines which could be habitable to biofilms or martian life 

able to tolerate conditions too old for terrestrial life 

 

The other main possibility is life transferred in the dust, see: 

 

• NASA fail to consider at all the potential for winds to transfer microbes imbedded 

in a grain of dust to Jezero crater shielded from the UV by the global dust storms 

The main reason this mission is low risk is:  

1. The mission isn't designed to look for present day life 

2. If there are microhabitats in Jezero crater for Martian life with greater capability than 

terrestrial life or even for terrestrial life in biofilms - they may be uninhabited 

3. If these potential microhabitats for martian life are inhabited, this mission is still not 

likely to return life because it is not going to return the brines Curiosity discovered or any 

other likely microhabitats 

4. There might be viable spores in the dust but they are returning hardly any of the dust 

from the surface. Unless spores are very abundant they are not likely to return a spore in a 

few grains of dust 

5. They aren't returning a sample of dirt. So - if Viking did find life, they likely won't return 

it 

Then you can go on to consider what kind of life might be on Mars. 

 

• Mars could be potentially habitable to life in some form or uninhabitable. 

• Assuming Mars is potentially habitable to life in some form, the habitats could be 

inhabited or uninhabited 

• If there is life it may survive the transfer back to Earth or not survive (as it is significantly 

different from Martian conditions) 

• If there is life, it might spread easily if released on Earth, or it might require a specialist 

habitat (e.g. chlorates or perchlorates) and be containable.   
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• It might be early life, at a similar level of evolution to terrestrial life or have evolved further 

to more complex genomes. 

• It might be beneficial, or harmless or harmful.  

• If harmful it might be a minor nuisance (e.g. can make cheese mouldy in a freezer or 

algal blooms covering lakes), a major nuisance (e.g. harmful to an important agricultural 

crop), an opportunistic pathogens for humans or animals or plants, or finally, cause major 

chemical or biological changes to Earth’s important ecosystems or biosphere 

 

You can argue that early life in most cases would be made extinct by whatever made it extinct 

on Earth. But early life on Mars could be 

 

• Related to Earth life 

• Unrelated. 

If unrelated it could be 

• Same chirality 

• Mirror chirality. 

 

The combination of unrelated and mirror chirality could give it a competitive advantage even if 

early life 

 

There is no rigorous way really to assign any probabilities to any of these options though many 

astrobiologists will have opinions about which ones are most likely. So, just as a way to get 

started thinking about this, let’s make them all equal probability.  

First, once more, we have the unknown chance of returning life at all given that Perseverance is 

not searching for present day life and the site was selected based on past rather than present day 

life. That is likely low already. 

Add to that: 

 

• Habitable ½ 

• Inhabited ½ 

• Survives ½ 

• Can spread on Earth and can’t be contained ½ 

• Not early life 2/3 (will do separate list for early life) 

• Harmful 1/3 

• Causes widespread effects ¼ 

So we get 1/16 for the first four points. Then it’s an extra 1/72 for it to be harmful. Then another 

¼ for large scale effects. 

 

So we get 1 chance in 16 * 72 * 4 = 1 chance in 4,608 that life returned from Mars has large 

scale effects.  We get 1 chance in 16 * 72 or one chance in 1,152 for some harmful effects all 

the way down to minor nuisances. 
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However we haven’t accounted for the mirror life so let’s do that one. 

1/16 for the first four points again – returning life that can spread on Earth and can’t be 

contained once released. 

 

Then mirror life is of concern whether early or recent. 

• ½ that it is unrelated 

• ½ that it’s mirror life 

 

So that then becomes 1 in 64 that we return mirror life that is able to spread on Earth and can’t 

be contained. 

 

This depends very much on how you evaluate the chance that Martian life is unrelated to 

terrestrial life and how you evaluate the chance that unrelated life is mirror life. 

 

But it does seem a reason for particular care about mirror life even if the chance of it is rather 

lower than this suggest. 

 

So those are the chances if they tried really hard to return life. 

 

But they aren’t, they are returning samples of geological interest with any present day life only 

there incidentally. The chance of returning life if they do absolutely no changes to the mission - 

is quite low it depends on whether life is almost everywhere on Mars., 

 

If the Viking missions did find life on Mars it has a chance. Not a high chance since they aren't 

planning a scoop of dirt which is what Viking did, but a chance since some of the dirt and dust 

may get onto the sample tubes. 

 

If the Viking missions didn't find life it's almost no chance since they aren't trying to sample any 

potential microhabitats in Jezero crater. 

 

Just the very remote chance of a viable spore in the dust. But they don't have a dedicated dust 

collector so there will be few dust grains, any that get stuck to the outside of the tubes by 

chance. 

 

And then you have the BSL-4 facility to reduce the risk further.  

 

I don’t for a moment want to suggest there is anything rigorous about this calculation. Rather it’s 

like the Drake Equation which tries to work out how many civilizations there are in the galaxy. 

The aim isn’t really to get an answer but for a framework to start to think about the topic. 
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The Great Oxygenation Event which transformed Earth’s 

atmosphere and oceans chemically gives a practical example 

of a way life from another Mars-like planet could in principle 

cause large scale changes to an Earth-like planet 

 

In the quote from the National Research Council, they give no examples when they say “the 

possibility that such effects occurred in the distant past cannot be discounted.” (Board et al, 

2009: 48). 

: 

 

Certainly in the modern era, there is no evidence for large-scale or other negative effects 

that are attributable to the frequent deliveries to Earth of essentially unaltered Martian 

rocks. However the possibility that such effects occurred in the distant past cannot be 

discounted.” 

 

See above: 

 

• NRC 2009 report emphasizes that large scale effects can’t be ruled out – it says 

potential hazards from microbes returned in a sample return mission are significantly 

greater than hazards from microbes in meteorites and that though there have certainly 

been no recent large scale effects that could be due to microbes from Mars, the 

possibility of large scale effects in the distant past can’t be disproved – draft EIS says 

potential environmental effects would not be significant  

 

There are many past extinctions in the geological record that are not well understood. However 

the Great Oxygenation Event could be relevant. Chroococcidiopsis may be partially responsible 

for the oxygenation of our atmosphere. One minority view explains the unusual ionizing 

radiation resistance of Chroococcidiopsis as a natural adaptation of Martian organisms (Pavlov 

et al, 2006).  

 

This is weak evidence since the ionizing radiation resistance of chroococcidiopsis could be a 

byproduct of the repair mechanisms that chroococcidiopsis uses for UV resistance and 

desiccation resistance. Cyanobacteria originated in the Precambrian era. It could have 

developed these mechanisms back then, when, with no oxygen in the atmosphere, there was 

no ozone layer to shield out UV radiation (Casero et al, 2020) (Rahman et al, 2014) 

 

However, the early Martian atmosphere was rich in oxygen (Lanza et al, 2016) before Earth and 

though much of that may well be due to ionizing radiation from solar storms splitting the water 

it’s not impossible that it had photosynthetic life.as well. 

 

Some astrobiologists have hypothesized that terrestrial life originated on Mars. If so, 

photosynthesis could have developed on Mars first too then transferred to Earth. Whether this 

https://www.researchgate.net/publication/269708516_Rahman_et_al_2014_CC_Food_AJEA
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happened for Mars and Earth, it does give a practical example of a way that life from another 

planet such as Mars could in principle cause large scale changes to an Earth-like planet. 

 

So was this an extinction event? The Great Oxygenation Event might have forced rapid 

evolution rather than extinction. Early anaerobes may have retreated to anaerobic habitats as 

obligate anaerobes, which we still have today (Lane, 2015).  

 

However, there is some evidence suggesting extinctions. There is evidence of exceptionally 

large sulfur reducing bacteria from this time, 20 to 265 µm in size, which also occasionally occur 

in short chains of cells. This may be part of a diverse ecosystem that predated the GOE (Czaja 

et al, 2016). If such an ecosystem existed, most traces of it are gone now. However it seems not 

impossible that the GOE had major impacts on a prior diverse ecosystem. 

 

There are many other confirmed mass extinctions in the fossil record. In many cases the cause 

is not fully known or debated leaving it not impossible that microbial transfer from Mars could be 

part of the explanation. 

 

Whether or not this ever happened in the past, this worked example of the Great Oxygenation 

Event shows how in the worst case scenario, independently evolved life from another planet 

could lead to large scale transformations of the chemistry of Earth’s atmosphere or oceans, 

climate and ecosystems. Humans with modern technology would surely survive a gradual 

transformation of our atmosphere and oceans but it could make the planet significantly less 

habitable in the short term for humans and other species. 

 

If Mars has mirror life, returning it could potentially cause a similar 

large scale transformation of terrestrial ecosystems to the Great 

Oxygenation Event by gradually converting organics to mirror 

organics – an example worst case scenario 

 

An example of a possible large scale transformation could be return of mirror life, if such exists 

on Mars and has never got to Earth. If it exists on Mars it is likely able to make use of both 

normal and mirror organics since most of the organics on Mars likely comes from meteorites 

and comets and interplanetary dust which has organics of both types. 

 

Only a few terrestrial microbes can digest mirror organics so this would be a competitive 

advantage for the invasive mirror microbe species from Mars. Over time, this single species 

could diversify and could gradually transform nearly all the organics on Earth to mirror organics 

and make Earth significantly less habitable for terrestrial life.  
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Chroococcidioopsis survives on rock + nitrogen + water + sunlight 

 

Mirror chroococcidiopsis could spread on Earth without any support from other life. 

 

Photograph shows chroococcidiopsis in a cave at Ares Station, Cantabria in the Iberian 

peninsula – with a transparent covering of other microbes – it can live on its own or in 

colonies with other life and it can also live inside rocks. Photo by Proyecto Agua on 

Flickr 

 

Chroococcidiopsis is a “polyextremonphile” which over hundreds of millions of years hash 

accumulated numerous metabolic pathways and adaptations adaptations. A mirror life analogue 

from Mars might be similar. Like Chroococcidiopsis it may be able to survive almost anywhere 

on Earth from Antarctic cliffs to tropical oceans and reservoirs, and from hot sunny deserts such 

as the Atacama desert to darkness hundreds of meters below the sea floor. I cover this below in 

the section: 

 

• A mirror life chroococcidiopsis analogue as a worst case example of a pioneer species 

that would have adaptations that let it survive almost anywhere on Earth if returned from 

Mars and that could never be returned safely as it would risk transforming terrestrial 

organics to mirror organics that most life can’t use 

 

This is an example worst case scenario that I consider in my preprint (Walker, 2022b). The 

mirror life could also be early life, even mirror life ribocells which may be able to pass through 

0.02 micron filters. If it is independently evolved on Mars there is no particular reason to expect 

it to be normal rather than mirror life. Nanobes such as the ribocells are so small they escape 

https://www.flickr.com/photos/microagua/50570508987
https://www.flickr.com/photos/microagua/50570508987
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protozoan grazing and they would also have a much higher surface to volume ratio which is an 

advantage in habitats with low nutrient availability – so they may have a competitive advantage 

with more advanced modern life. That was a motivation for searching for a shadow biosphere of 

nanobes on Earth. None was found but possibly life returned from Mars could establish such a 

shadow biosphere here.  

 

Scenario based approach – in other scenarios life from another planet is 

harmless or indeed beneficial 

 

I found many other scenarios, including some where life from another planet could be harmless, 

or indeed beneficial. The archaea are an example of an entire domain of life that is largely 

beneficial in it is interactions with other life on Earth. A domain is the highest level of 

classification, the other domains are the bacteria and Eukarya. All multicellular life belongs to 

the Eukarya. 

 

On Earth though harmful invasive species get most publicity there are many species that are 

beneficial or have no effect when they spread to new regions – contributing to the biodiversityh. 

 

It would be possible for Martian life to lead to a more biodiverse and even a more productive 

biosphere on Earth for instance if they can make better use of low light levels or of nutrient poor 

regions of the Earth’s surface or oceans. 

 

See sections of  my preprint (Walker, 2022b) 

 

• Could Martian microbes be harmless to terrestrial organisms? 

• Enhanced Gaia - could Martian life be beneficial to Earth’s biosphere? 

 

But we have no experience of what happens if two biospheres collide in this way. We need to 

know what is there, on Mars. We need to know if there is life there, and if so, if it is safe to return 

it or not. This example shows that we can’t assume it is safe until we know what it is. 

 

I use a scenario based approach to explore this in  my preprint (Walker, 2022b), explained in 

the introduction in the section: 

 

• Scenario based approach to explore the consequences if Earth or Mars develops a 

mixed biosphere involving two forms of biochemistry or alien species from the other 

planet – such as mirror life, RNA world nanobes, early life cells that cooperate rather 

than compete before modern evolution, fungi and molds that our immune systems don’t 

recognize, or a new domain of life that is largely beneficial to terrestrial ecosystems 

similarly to the archaea 

 

https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd/
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A single mission can’t resolve this question as it may not return life at all – 

and life that is safe for Earth may co-exist with other life that can never be 

returned safely which we could encounter in future missions on a planet 

with total surface area similar to the land area of Earth – it will take more 

future missions to resolve this question 

 

We won’t be able to resolve this question of whether there is life on Mars or not and whether it is 

safe for Earth or not with a single mission such as Perseverance returning samples from 

selected spots from one location on Mars.  

 

Even if we return familiar life, it could have new capabilities acquired on Mars so needs careful 

study. Even if we prove that the species we returned are safe, they might easily co-exist with 

other species that can never be returned to Earth such as mirror life, that we will discover with 

future missions, even the next mission to Mars. 

 

See the sections of  my preprint (Walker, 2022b): 

 

• Early discovery of a familiar microbe from Mars such as chroococcidiopsis is not enough 

to prove the sample is safe – as familiar life can have new capabilities 

• Discovery of a familiar microbe like chroococcidiopsis does not prove all life in the 

sample is familiar – if terrestrial life originated on Mars, it could have extra domains of 

life that never got to Earth 

• Potential to discover multiple biochemistries such as mirror and non mirror life in the 

same sample – perhaps evolved in disconnected early Martian habitats – or unfamiliar 

life mixed with familiar life transferred from Earth to Mars in the past 

 

Resolving this is a matter for future missions and surely needs to be a priority for space 

colonization enthusiasts and astrobiologists alike. In  my preprint (Walker, 2022b) I look at ways 

we may be able to do it: 

 

• Resolving these issues with a rapid astrobiological survey, with astronauts teleoperating 

rovers from orbit around Mars 

 

For space colonization enthusiasts, though discovery of a form of life that can never be returned 

to Earth such as mirror life would likely mean they can never colonize the Mars surface (at least 

not if they return to Earth) it would lead to huge interest in the planet which could be safely 

explored from orbit virtually via telepresence similarly to the way we explore computer game 

landscapes and from space settlements for instance on the moons Phobos and Deimos, and 

could be exploited also commercially using telerobotics to export materials to Earth.  

 

A form of life that we can never return safely to Earth such as mirror life can also be one of the 

most exciting possibilities in terms of expanding knowledge. The mirror biology could easily be 

https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd/
https://osf.io/rk2gd/
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of great commercial value to us. There are many other places in the solar system to explore, 

settle and perhaps colonize. 

 

 

I discuss this  under: 

 

• Discovery of extant life on Mars could lead to long term interest in the planet, including 

orbiting colonies using sterile robots as our mobile eyes and hands to explore the planet 

from orbit via telepresence, and perhaps develop it commercially too, making it more 

habitable for Martian life 

• This could be a stepping stone to human outposts or colonies further afield such as 

Jupiter’s Callisto or Saturn’s Titan, and settlements in self contained habitats throughout 

the solar system, spinning slowly for artificial gravity and built from materials from 

asteroids and comets 

A mirror life chroococcidiopsis analogue as a worst case example of a 

pioneer species that would have adaptations that let it survive almost 

anywhere on Earth if returned from Mars and that could never be returned 

safely as it would risk transforming terrestrial organics to mirror organics 

that most life can’t use 

 

We only need one pioneer species to get to Earth to set up a new ecosystem. Martian life would 

be likely to be able to survive on Earth. The Martian brines are highly oxidising, with 

perchlorates and hydrogen peroxides. They are so oxidizing that many terrestrial life forms 

would find hard to tolerate them. Recent research by Stamenković suggests the cold brines on 

Mars may be oxygenated too, even with the very low levels of oxygen, in the very cold 

conditions since oxygen is more soluble in cold water. 

Then, though Mars gets very cold at night, in daytime it can sometimes reach above 20°C. 

Microbes returned from Mars to Ear may be able to settle in on Earth as a "home from home" 

even more habitable for them than Earth. 

For instance, suppose that Mars has mirror life, which is like the European starling, is not able to 

get here via panspermia. An example here is Chroococcidiopsis, a blue-green algae found in 

Antarctic cliffs, also in the Arizona desert near JPL, but also is ubiquitous through Earth, found 

in the sea, in tropical water supplies, both wet, dry, hot, cold, it's a polyextremophile that has 

numerous metabolic pathways that let it survive almost everywhere, and it is one of the top 

candidates for a form of life that could survive on Mars. 

 

A mirror analogue of chroococcidiopsis from Mars could flourish almost anywhere from Antarctic 

cliffs to the Atacama desert (Bahl et al, 2011) or from Sri Lankan reservoirs (Magana-Arachchi 
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et al, 2013) to the Chinese sea (Xu et al, 201q26:111), and form the foundation of a mirror 

ecosystem.   

 

It is a pioneer species and a primary producer and doesn’t depend on any other life to survive. 

 

Chroococcidiopsis,is an ancient polyextremophile with numerous alternative metabolic 

pathways it can utilize, including nitrogen fixation, methanotrophy, sulfate reduction, nitrate 

reduction etc (KEGG, n.d.), even able to grow in complete darkness using a hydrogen-based 

lithoautotrophic metabolism with viable populations found over 600 meters below the surface 

(Puente-Sánchez et al, 2018) and in another case 750 meters below the Atlantic sea bed (Li et 

al, 2020). 

 

In the same way a mirror Martian polyextremophile might retain numerous metabolic pathways 

from its evolutionary history on Mars that it could use to colonize diverse habitats on Earth. The 

Martian history would include hydrothermal vents, oxygen rich lakes, and almost any climate 

condition it could encounter on Earth as well as some conditions not present here naturally such 

as ultra low temperatures and ultra low atmospheric pressures and far higher levels of UV and 

ionizing radiation than life encounters on Earth. 

 

So, suppose there is a mirror chroococcidiopsis on Mars.. Or some other pioneer species 

including ultramicrobacteria, maybe even mirror life ribocells. 

 

Once it was well established, other mirror life could build up a microbial ecosystem based on 

this and in this way mirror life could start to spread through our ecosystems. 

 

This is a worst case scenario. This does not mean it is inevitable that Martian life would harm 

Earth. Indeed there are other scenarios where Marian life can be harmless or even beneficial to 

Earth’s biosphere. 
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Writings by John Rummel, Joshua Lederberg, 

Carl Sagan, Claudius Gros and many others 

emphasize that though putative martin life based 

on a different biochemistry may not be adapted 

to us – we also haven’t evolved immune 

defences to them – the reasoning of NASA’s 

sterilizing subcommittee is refuted by these papers 

which they don’t cite 

 

NASA’s sterilizing subcommittee on the risk of life from Mars claim that there is near zero 

probability that a putative martian microorganism could be pathogenic to humans – this is 

refuted in an extensive literature on ways that Martian life could be harmful to humans and our 

biosphere which they don’t cite. 

 

Their reasoning looks convincing at first if you haven't read the literature. (Craven et al., 2021) 

 

Microorganisms are usually highly adapted to specific biological niches or hosts, and 

even when novel pathogenicity arises, as in zoonosis or opportunistic infections, it does 

not represent a major evolutionary gulf. Emerging human pathogens are often the result 

of zoonosis in which an existing pathogen moves between related species being 

modified during this transfer such as coronaviruses, Ebola or HIV which all emerged 

from other mammalian hosts, or influenza which can transmit from avian or mammalian 

hosts.  

...  

Since any putative Martian microorganism would not have experienced long-term 

evolutionary contact with humans (or other Earth host), the presence of a direct 

pathogen on Mars is likely to have a near-zero probability. 

 

However, this seems to be a minority view and this working group doesn’t cite the many papers 

by experts warning of the potential for major issues.  

 

There are many examples in the literature of experts warning that the argument used by the 

NASA’s sterilizing subcommittee is not valid. Here are some quotes from John Rummel, Joshua 

Ledererg, Carl Sagan,  and Claudius Gros, all warning that this reasoning is not correct. 

This is how John Rummel put it in the foreword to “When Biospheres Collide” (Meltzer, 2012):  
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"Likewise, we don't know what would happen if alien organisms were introduced into 

Earth's biosphere. Would a close relationship (and a benign one) be obvious to all, or will 

Martian life be so alien as to be unnoticed by both Earth organisms and human 

defenses? We really have no data to address these questions, and considerate 

scientists fear conducting these experiments without proper safeguards. After all, this is 

the only biosphere we currently know - and we do love it!" 

 

Joshua Lederberg, who got his Nobel prize for his work on microbial genetics was a key figure 

in the early work on planetary protection (Scharf, 2016). He first began to give it his attention in 

1957 (Lederberg, 1959). He put it like this: 

 

“Whether a microorganism from Mars exists and could attack us is more conjectural. If 

so, it might be a zoonosis to beat all others. On the one hand, how could microbes from 

Mars be pathogenic for hosts on Earth when so many subtle adaptations are needed for 

any new organisms to come into a host and cause disease? On the other hand, 

microorganisms make little besides proteins and carbohydrates, and the human or other 

mammalian immune systems typically respond to peptides or carbohydrates produced 

by invading pathogens. Thus, although the hypothetical parasite from Mars is not 

adapted to live in a host from Earth, our immune systems are not equipped to cope with 

totally alien parasites: a conceptual impasse." (Lederberg, 1999b) 

 

Our immune system and defenses are keyed to various chemicals produced by Earth life. such 

as peptides and carbohydrates. Mars life might use different chemicals. In the best case (for 

us), the Martian microbes are unable to make anything of terrestrial biochemistry and give up. 

However, in the worst case, it’s the other way around. This time, it’s our defense systems that 

are mystified. The microbes don’t resemble Earth life and so our defenses don’t recognize the 

attackers as life or attempt to do anything about them. 

 

Carl Sagan put it like this (Sagan, 1973:162): 

"Precisely because Mars is an environment of great potential biological interest, it is 

possible that on Mars there are pathogens, organisms which, if transported to the 

terrestrial environment, might do enormous biological damage - a Martian plague, 

the twist in the plot of H. G. Wells' War of the Worlds, but in reverse. This is an 

extremely grave point. On the one hand, we can argue that Martian organisms 

cannot cause any serious problems to terrestrial organisms, because there has 

been no biological contact for 4.5 billion years between Martian and terrestrial 

organisms. On the other hand, we can argue equally well that terrestrial organisms 

have evolved no defenses against potential Martian pathogens, precisely because 

there has been no such contact for 4.5 billion years. The chance of such an 

infection may be very small, but the hazards, if it occurs, are certainly very high. 

In the same book he wrote (Sagan, 1973) 
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Because of the danger of back-contamination of Earth, I firmly believe that manned 

landings on Mars should be postponed until the beginning of the next century, after a 

vigorous program of unmanned Martian exobiology and terrestrial epidemiology. I reach 

this conclusion reluctantly. I, myself, would love to be involved in the first manned 

expedition to Mars. But an exhaustive program of unmanned biological exploration of 

Mars is necessary first. 

I reach this conclusion reluctantly. I, myself, would love to be involved in the first 

manned expedition to Mars. But an exhaustive program of unmanned biological 

exploration of Mars is necessary first. The likelihood that such pathogens exist is 

probably small, but we cannot take even a small risk with a billion lives. Nevertheless, I 

believe that people will be treading the Martian surface near the beginning of the twenty-

first century. 

The physicist Claudius Gros looks at a clash of interpenetrating biospheres in his paper on a 

"Genesis project" to develop ecospheres on transiently habitable planets. Gros reasons that the 

key to functioning of the immune system of multicellular organisms, plants or animals, is 

recognition of “non-self”. He presumes that biological defense mechanisms evolve only when 

the threat is actually present and they don’t evolve to respond to a never encountered 

theoretical possibility (Gros, 2016). 

 

“How likely is it then, that ‘non-self’ recognition will work also for alien microbes?" 

 

"Here we presume, that general evolutionary principles hold. Namely, that biological 

defense mechanisms evolve only when the threat is actually present and not just a 

theoretical possibility. Under this assumption the outlook for two clashing complex 

biospheres becomes quite dire." 

 

"In the best case scenario the microbes of one of the biospheres will eat at first through 

the higher multicellular organisms of the other biosphere. Primitive multicellular 

organisms may however survive the onslaught through a strategy involving rapid 

reproduction and adaption. The overall extinction rates could then be kept, together with 

the respective recovery times, 1–10 Ma, to levels comparable to that of terrestrial mass 

extinction events." 

 

"In the worst case scenario more or less all multicellular organism of the planet targeted 

for human settlement would be eradicated. The host planet would then be reduced to a 

microbial slush in a pre-cambrian state, with considerably prolonged recovery times. The 

leftovers of the terrestrial and the indigenous biospheres may coexist in the end in terms 

of ‘shadow biospheres’ " 

 

The perception that microbial life from Mars would be safe for Earth seems to be a minority view 

amongst microbiologists. Here is a survey of 201 microbiologists attending a five-session 

colloquium “Prospecting for Extraterrestrial Microorganisms and the Origin of Life: An Exercise 

in Astrobiology” in 1998 (MacGregor et al, 2001) 
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89.5% said all sample returns should be considered hazardous until proven safe, 9% said they 

shouldn’t be considered hazardous, statement, based on whether they agreed or strongly 

agreed versus those who disagreed or strongly disagreed with this statement: 

 

"All materials brought to Earth from Mars should be considered hazardous until 

proven otherwise"  

 

79.1% said our current understanding of microbiology is not sufficient to predict how life 

elsewhere in our solar system could impact on the environment of Earth. 18.4% said it is 

sufficient, based on this statement: 

 

"Our current scientific understanding of microbiology is sufficient to predict with 

reasonable certainty how life elsewhere in our solar system, should it exist, could 

impact our environment if returned in samples to Earth" 

 

22.9% said if there is life on Mars it poses no threat to life on our planet, while 34.4% disagreed 

or strongly disagreed with this statement? 

"If there is life on Mars, it poses no threat to life on our planet."  

 

I couldn’t find detailed research into how an extraterrestrial biology would evade our immune 

responses so I’ve looked at it in a preliminary way myself. 

 

First, let’s look at fungi. Our body is protected by broad spectrum antimicrobials and then by 

specific immune responses such as the response to specific fungi that harm humans.  

 

 

Let’s look at some of these issues: 

Example of fungi to illustrate how our immune system may not 

notice an alien fungus with a different biochemistry not recognized 

by our skin’s natural antimicrobials or immune responses – fungi 

kill 1.5 million people a year, mainly immunocompromised and we 

may all be immunocompromised to an alien fungus from Mars 

There are many simple examples that contradict the findings of the sterilizing subcommittee that 

martian life would be harmless because it hasn’t adapted to human hosts, such as fungal 

pathogens of immunocompromised patients. Opportunistic fungi kill an estimated 1.5 million 

people worldwide every year (Brown et al, 2012). Those are often immuncompromised people 

as our skin and immune system has natural defences against fungi and especially the three 

most common genera, Candida, Aspergillus, and Cryptococcus (Kumar et al, 2018). We may 
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not have natural defences against unrelated genera of fungi from Mars. More on this in the next 

section. 

 

Our antibiotics might not work with Martian life. They target specific enzymes and processes 

within living cells based on Earth's biochemistry (Kapoor et al, 2017). Let’s take penicillin as an 

example. It targets transpeptidase which is essential for cross linking in the final stage of cell 

wall synthesis to make rigid cell walls (Yocum et al, 1980). It does that by forming a highly 

stable penicilloyl-enzyme intermediate. One way that microbes develop resistance to this 

antibiotic is by using different enzymes that perform the same function in the cell (Gordon et al, 

2000).  

 

An alien biochemistry likely has different enzymes already, through independent evolution. So 

antibiotics may not work with it. 

It is possible that our skin gives little protection against Martian microbes. Its first line of 

defence consists of sixteen broad spectrum antimicrobial peptides and the second line of 

defence consists of T cell responses with inflammatory cascades in the subepithelial 

tissue (Abdo et al, 2020). The antimicrobials might have no effect on an alien 

biochemistry, and the immune response might not be triggered by it. If this were to 

happen, Martian life might penetrate these barriers without being noticed by our skin’s 

defences and enter the underlying flesh and bloodstream. 

The endolithic yeast Exophiala jeanselmei can survive simulated Martian conditions, without any 

source of water except atmospheric humidity (Zakharova et al, 2014).  

 

Exophiala jeanselmei is closely related to opportunistic human pathogens. It can be an 

opportunistic human pathogen itself, causing superficial and localized infections in humans, in 

skin, nails, cornea and superficial wounds and is occasionally serious for immunocompromised 

individuals and is naturally resistant to most antifungals on the market (Urbaniakt al, 2019).  

Most healthy people have fungi in their sinuses, but these are harmless to them. Sometimes in 

patients with normal immune systems, these may form “fungal balls” that occupy the empty 

spaces in our sinuses.  

 

When the immune system is not functioning properly, fungi can penetrate mucosal barriers and 

the epithelial layer and invade the host tissues and when this happens the results can be 

serious (Soler et al, 2012). A diverse range of fungal species can cause a lethal infection in 

immunocompromised hosts and these are often resistant to antibiotics (Pfaller et al, 2004)  

Opportunistic fungi kill an estimated 1.5 million people worldwide every year (Brown et al, 2012). 

Our immune system probably stops many fungal infections by recognizing particular patterns, 

the pathogen-associated molecular patterns (PAMPs). It likely does this using pattern 

recognition receptors (PRRs) which then trigger the immune response. These are targeted to 

the molecular patterns from the most common fungi that attack humans, species from three 

genera: Candida, Aspergillus, and Cryptococcus with different molecular patterns specific to 

each genera (Kumar et al, 2018).  
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Our immune system wouldn’t have these pattern reception receptors for a martian fungus with 

an alien biochemistry. It may not have them even for related martian fungal species in a 

different genera from any terrestrial biology. 

 

We have only a few effective antifungal medicines, making antifungal resistant microbes a 

problem (Cowen et al, 2015). Alien life might be naturally antifungal resistant, if they don’t have 

the biochemistry targeted by antifungal medicines.  

For alien life we may all be effectively immunocompromised if the broad spectrum 

antibiotics in our skin and epithelium have no effect on the alien life, and our innate or 

adaptive immune systems don’t recognize it as pathogenic. 

Example of a a Shewanella algae to show that alien life might be 

able to confer antibiotic resistance to synthetic antiobitics even if it 

is not itself affected by them 

When human pathogens develop antibiotic resistance, this often comes from other microbes by 

horizontal gene transfer, as they arise too quickly for the microbes to evolve it themselves.  

 

These resistance genes are found for every type of antimicrobial (Martínez, 2012). Many of the 

naturally occurring antibiotic resistance genes probably originate in microbes that make those 

antibiotics themselves and need the resistance gene to protect themselves from their own 

antibiotics.  

 

However, the gene that gives antibiotic resistance to quinolones, a new non naturally occurring 

synthetic antibiotic, seems to have originated in a Shewanella algae which doesn't produce 

antibiotics itself.  So it seems likely to have a different role in it (Martínez, 2012). 

 

In the same way, even related Martian microbes could have antibiotic resistance or confer novel 

antibiotic resistance to terrestrial microbes through genes evolved for other purposes on Mars 

that lead to their internal processes changing in ways that make the antibiotics no longer 

effective. 

 

Examples of exotoxins, protoxins, allergens, secondary 

metabolites that spoil food, accidentally toxic signalling chemicals 

(semiochemials) and the possibility that the internal chemistry of 

alien life, such as perchlorates in place of salt for the intracellular 

medium could be harmful to terrestrial life 
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Other issues may arise from secondary metabolites, for instance, Wallemia, an airborne 

extremophile fungus, is found in food, especially highly salted or sweetened food such as salted 

fish, jams and cake. It is adapted to low water activity, and produces the secondary toxic 

metabolites wallimidione, walleminol and walleminon. W. sebi is a common cause for spoiled 

food through its production of secondary metabolites. The most toxic of these is wallimidione 

(Desroches et al, 2014). Mars conditions are likely to favour life adapted to low water activity 

levels, and so, as for w. sebi, could be a nuisance particularly for highly salted or sugary foods, 

where they also might produce secondary metabolites.  

 

Martian life could cause allergic reactions. W. sebi has been found to cause allergic 

sensitization (Desroches et al, 2014). Another example is the fungus Aspergillus which can 

trigger asthma, and as an opportunistic infection can also cause the more serious illness of 

aspergillosis, and death (Latgé, 1999). 

 

The common allergic reaction to poison ivy is due to Urushiol, a Catichol C6H4(OH)2 with one or 

more alkyl chains substituted in the 3 position. It forms antigens by binding to surface proteins of 

the dermis or epidermis so forming an antigen, which leads to an allergic response on the 

second exposure (Bryson, 1996, page 680). This again is a simple enough chemical so that it 

may occur in an alien biology, or something else similar. 

 

For another example, sesquiterpines is a toxic signaling chemical (semiochemical) produced by 

potatoes under stress (Matthews et al, 2006). Could semiochemicals produced by an alien 

biochemistry be accidentally toxic to Earth life. 

 

Alien biochemistries could also produce, or contain protoxins, which when metabolized break 

down into toxic products. For instance hypoglycin A, which is not itself toxic, is broken down into 

the highly toxic MCPA-CoA on digestion and can lead to the fatal Jamaican vomiting sickness 

after eating the unripe fruit of the Ackee tree, a national foodstuff in Jamaica (Holson, 2015). A 

more commonplace example is methanol which is converted into toxins when digested 

(Mégarbane, 2005). 

 

Again, toxicity may be more common if the secondary metabolites or protoxins are based on a 

different biochemistry.  

 

The chemistry of alien cells may itself be toxic to Earth life. One suggestion is that Martian life 

might use hydrogen peroxide and perchlorates in its intracellular fluids in place of the chlorides 

used by Earth life, similarly to the composition of the brines it inhabits (Schulze-Makuch et al, 

2010a). This could adversely affect Earth microbes that interact with Martian cells or scavenge 

dead Martian life.  

 

Waste products and metabolic intermediaries could also be accidentally toxic or allergenic. 

 

As before all, if humans are unaffected, these effects could still harm other creatures in Earth’s 

biosphere, and harm us indirectly, if other creatures we depend on are affected. 



81 of 176 

Accidental similarity of amino acids forming neurotoxins such as 

BMAA which resembles L-serine – a putative cause for the motor 

neurone disease LouGherig’s disease or ALS 

Certain algae blooms, including Chroococcidiopsis produce β-N-methylamino-L-alanine or 

BMAA (table 2 of Cox et al, 2005) which is a neurotoxin which can contaminate drinking water 

and in worst cases cause death (Cox et al, 2005). 

 

In laboratory experiments BMAA can get misincorporated into proteins in human cells, and is a 

putative cause for the motor neurone disease ALS, or Lou Gherig’s disease (Dunlop et al, 

2013). This time BMAA is not produced as an exotoxin. The poisoning is accidental, it gets 

misincorporated because of its accidental partial resemblance to l-serine. 

 

There are thousands of potential amino acids an alien biology might use. An extraterrestrial 

biology could use many more amino acids than the 20 encoded in terrestrial life. 

 

There are 140 amino acids that occur naturally in terrestrial biology, but not in proteins 

(Ambrogelly et al., 2007). 52 amino acids have been identified in the Murchison meteorite 

(Cronin, 1983). A computer search turned up nearly 4,000 biologically reasonable amino acids 

(Meringer, 2013) (Doyle, 2014). 

 

Many of those won’t occur in nature, but terrestrial biology also includes non natural amino 

acids. Meanwhile also many of the natural amino acids don’t occur in terrestrial biology and 

might potentially be used in extraterrestrial biology. 

 

If two biospheres collide that are based on a different vocabulary of amino acids, there may be 

many such accidental similarities. In the case of BMAA, it’s been suggested that proteobacteria 

in our gut provide some protection by removing it (Baugh et al, 2017). However there might be 

no helpful microbes to protect us by removing similarly close analogs of our amino acids from 

an alien biochemistry.  

 

Example of legionnaire’s disease which is adapted to biofilms and 

amoebae - but uses the same methods to invade human lungs 

 

Legionnaire's disease is a pathogen of biofilms that isn't adapted to humans. It uses the same 

method it uses to infect protozoa in biofilms to infect the macrophages in our lungs  (Alberts et 

al 2002): 

 

Legionella pneumophila is normally a parasite of freshwater amoebae, which take it up 

by phagocytosis. When droplets of water containing L. pneumophila or infected 
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amoebae are inhaled into the lung, the bacteria can invade and live inside alveolar 

macrophages, which, to the bacteria, must seem just like large amoebae.   

Warmflash et al put it like this (Warmflash, 2007) 

 

In essence, all that a potentially infectious human pathogen needs to emerge and persist 

is to grow and live naturally under conditions that are similar to those that it might later 

encounter in a human host. On Mars, these conditions might be met in a particular niche 

within the extracellular environment of a biofilm, or within the intracellular environment of 

another single-celled Martian organism. 

... 

To be sure, the genetic similarity between humans and protozoa is much greater than 

could be expected between humans and the Martian host of a Martian microbe. 

  

However, the L. pneumophila example does bring into question the rationale of the need 

for host-pathogen coevolution. Even in the context of a planetary bio-sphere that is 

limited to single-celled life, and even where there is unlikely to have been a co-evolution 

between agent and host organism, the possibility of infectious agents, even an invasive 

type, cannot be ruled out.  

 

Warmflash et al look at many potential pathogens of humans in the context of human astronauts 

on Mars. However their conclusion was that though it isn’t risk free, we should accept the risks 

because in their view they are outweighed by the benefits of human exploration of Mars. They 

say we should try to limit the risks by biological containment on Mars and quarantine on return 

to Earth. (Warmflash, 2007). 

 

Since the discovery and study of Martian life can have long-term benefits for humanity, 

the risk that Martian life might include pathogens should not be an obstacle to human 

exploration. 

 

Since this potentially affects all humans on Earth in the worst case, this is surely a matter for 

wider discussion than colonization enthusiasts, whether we all wish to take these risks and are 

of the view that the benefits of humans on Mars outweigh the risks of pathogens returned from 

Mars. 

 

As we saw, Carl Sagan was of the view we shouldn’t take such risks, even if they are likely low, 

but should use unmanned missions to Mars to find out what is there first.  
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Example of independently evolved mirror life, evolved from the 

mirror chemicals to terrestrial life, to expand on the National 

Research Council and European Space Foundation statements 

about the potential for large scale environmental impacts of alien 

biochemistry in the sample return studies 

Be  

The worst case could transform the Earth's biosphere in a fundamental way. It could perhaps as 

major a transformation as the Great Oxygenation Event in terms of habitability. It might well be 

more habitable for some future form of life on Earth that evolves later, but not for us. 

 

Mirror life is a simple example that all astrobiologists agree is biologically plausible, just life that 

evolved from scratch using chemicals in the opposite, mirror sense to the chemicals used by 

terrestrial life. 

 

 

It’s not known how terrestrial homochirality evolved, with many proposed mechanisms 

(Blackmond, 2019). Some experts such as Blackmond and Vlieg have expressed the view that it 

is just the “luck of the draw” and that we could find another planet out there with mirror life 

(Brazil, 2015). So we have to consider the possibility that technicians could be contaminated by 

mirror bacteria.  

 

Mirror bacteria are likely to have a survival advantage on Earth. Most terrestrial life would be 

unable to metabolize most mirror organics such as starches, proteins, and fats (Dinan et al, 

2007) (Bohannon, 2010) 

 

Some species of terrestrial microbes might develop the ability to metabolize mirror organics. 

Our biosphere already has a few species of microbes that can express the isomerases and 

racemases needed to flip organics into their mirror molecules, to metabolize mirror organics 

(Pikuta et al, 2006) (Pikuta et al, 2010) (Pikuta et al, 2016). 

 

However, most terrestrial microbes would not be able to do anything with mirror organics. 

Meanwhile, Martian life could already have the equivalent enzymes to metabolize normal 

organics. This has to be a possibility, given that some terrestrial microbes can already 

metabolize mirror organics. 

 

One way this could happen is if Mars already has a biosphere where mirror and non mirror life 

co-exist. They might for instance have evolved separately in different habitats on early Mars and 

then two forms of life encounter each other later. Each form of life might then evolve the 

enzymes to metabolize organics from the other form of life. The result could be that mirror life 

from Mars is already able to metabolize non mirror starches, proteins and fats, giving it an initial 

competitive advantage over terrestrial life that has never been exposed to mirror organics. 
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Mirror Martian life might also need these enzymes to metabolize organics from the infall of 

meteorites, as these have both normal and mirror forms of carbohydrates, amino acids and 

other organics. 

 

Most organics on Mars may well come mainly from the infall of meteorites, comets and 

interplanetary dust (Frantseva et al, 2018) rather than from life processes even if there is life 

there. If there was no degradation of the organics, Mars should have 60 ppm of organics 

deposited into the regolith, averaged over its entire surface to a depth of a hundred meters 

(Goetz et al, 2016:247).  

 

This would lead to a strong selection advantage for life able to make maximal use of both 

isomers of sugars and amino acids in meteoritic material. 

 

The outcomes for terrestrial ecosystems from release of such a lifeform could be serious, as 

mirror life gradually converts terrestrial organics to indigestible mirror organics through one 

ecosystem after another 

 

The worst case is not human extinction but humans having to live essentially in space colonies 

on Earth growing crops in habitats, preserving tropical jungles, coral reefs etc in vast enclosed 

biomes with the technology of tomorrow. 

 

Especially if we returned independently evolved mirror life. That might well be adapted to be 

able to make use of the organics from comets, meteorites and interplanetary dust so would 

have the isomerases to transform organic food into its mirror image so it can eat it. There are a 

few terrestrial microbes can do this, can eat mirror organics, but it is a rare capability. 

 

So mirror life from Mars would slowly spread and consume ordinary organics, and transform it 

into mirror organics. Eventually I think terrestrial microbes would adapt and we'd end with a mix 

of mirror and ordinary microbes each able to use the opposite sense of organics – but these 

would be different biochemistries, different capabilities. The proportion of mirror and ordinary 

microbes would be hard to predict, but it could be mainly mirror organics in a worst case. 

Higher life couldn't evolve fast enough to make use of the mirror organics and it may well also 

interfere with its metabolism. Eventually over millions of years Earth's biosphere might well be 

enhanced as multicellular life evolves again able to use both types of organics  and maybe we 

can accelerate that with genetic manipulation but its not a legacy we'd want to leave to our 

descendants. 

 

Probably a transformation of our biosphere like this, converting organics to mirror organics, or 

half in half ordinary and mirror, would unfold slowly. The martian life would be likely slowly 

replicating anyway, even as polyextremophiles because it’s adapted to cold conditions and most 

psychrophiles have doubling times of months to years. 
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Then the mirror life has to evolve to exploit niches. But for instance a mirror blue-green algae (or 

perhaps black on Mars) analogue of chroococcidiopsis as a polyextremophile might already be 

pre-adapted to live almost anywhere on Earth retaining capabilities from the distant past just as 

Chroococcidiopsis has somehow achieved and retained the ability to heal itself from large 

numbers of double strand DNA breaks possibly a capability it develop 

 

There are numerous other examples of ways Martian life 

could harm Earth – plans for a future paper to expand on this in 

more detail using material from the larger preprint 

 

This is a topic for a future paper in this series. 

 

I cover this in my preprint (Walker, 2022b) in these sections, some of which have been included 

in this paper: 

 

• Many ways present day Martian life could harm terrestrial organisms 

• Mars could have opportunistic fungi – these kill 1.5 million people on Earth every year 

• Martian life could be a pathogen of Martian biofilms sufficiently closely adapted to infect 

protists on Earth – or it might be ignored by the white blood cell phagocytes and live in 

intercellular spaces of our lungs 

• Our antibiotics target specific enzymes and processes so  might not work with unrelated 

martian life – meanwhile related life might have naturally evolved accidental antibiotics 

like the Shewnella algae which seems to be the origin of the gene that confers 

resistance to quinolones – a new non naturally occurring synthetic antibiotic 

• Ways that our immune system may not notice an alien biochemistry without the natural 

antimicrobials or immune responses for alien opportunistic pathogens and other 

diseases 

• Could a Martian originated pathogen be airborne or otherwise spread human to human? 

• Microplastics and nanoplastics as an analogue for cells of alien life entering our bodies 

unrecognized by the immune system 

• Exotoxins, protoxins, allergens and opportunistic infection 

• Accidental similarity of amino acids forming neurotoxins such as BMAA which resembles 

L-serine – a putative cause for the motor neurone disease LouGherig’s disease or ALS 

• Martian microbes better adapted to terrestrial conditions than terrestrial life, example of 

more efficient photosynthesis 

• Example of a mirror life analogue of chroococcidiopsis, a photosynthetic nitrogen fixing 

polyextremophile 
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• Example of mirror life nanobacteria spreading through terrestrial ecosystems 

• Possibility of extraterrestrial Martian life setting up a “Diminished Gaia” on Earth 

• Worst case scenario where terrestrial life has no defences to an alien biology - humans 

survive by ‘paraterraforming’ a severely diminished Gaia 

• Worst case where alien life unrecognized by terrestrial immune systems spreads to 

pervade all terrestrial ecosystems 

• Could Martian microbes be harmless to terrestrial organisms? 

• Enhanced Gaia - could Martian life be beneficial to Earth’s biosphere? 

• Even if introducing martian life is largely beneficial, it could still be harmful in some 

ecosystems or have mixed effects with some harms and some benefits 

 

Enhanced Gaia - could Martian life be beneficial 

to Earth’s biosphere? 

So far we’ve focused on situations where biosphere collisions are harmful, since the topic is 

planetary protection, so we need to focus on scenarios where there is indeed a need to protect 

Earth. However we should also recognize that the introduction of extraterrestrial life to our 

biosphere could also be beneficial, as Rummel mentioned in his foreword to “When Biospheres 

Collide” (Meltzer, 2012). 

 

We have examples from multicellular life to show that invasive species aren’t always harmful. 

Schlaepfer et al did a survey of invasive species and in their table 1 they find many non native 

species that are actually beneficial. Some were deliberately introduced for their value for 

conservation, but many of the best examples were introduced unintentionally (Schlaepfer et al, 

2011). 

 

Schlaepfer doesn’t list any microbial examples. What could benign interactions with terrestrial 

life look like for Martian microbes? Here are a few suggestions: 

 

● More efficient photosynthetic life from Mars could increase the rate of sequestration of 

CO₂ in the sea and on land, improve soil organic content, and perhaps help with 

reduction of CO₂ levels in the atmosphere 

● More efficient photosynthesis could increase the productivity of oceans  

● Most of the surface layers of our oceans are deserts, except near to the coasts, because 

of the limitation of nitrogen, phosphorus, iron and silica (needed for diatom shells) 

(Bristow et al, 2017). If extraterrestrial life has different nutrient requirements, it may be 

able to inhabit these deserts and form the basis of an expanded food web. 

● Martian microbes could be better at nitrogen fixation, phosphorus and iron mobilization, 

and so improve our soils, and help with crop yields as endophytes.  
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● Martian life might aid digestion or enter into other beneficial forms of symbiosis with 

humans 

● Martian life could produce beneficial bioactive molecules as part of the human 

microbiome. These could include molecules that are antiviral, antibacterial, antifungal, 

insecticides, molecules that kill cancer cells, immunosuppressants, and antioxidants - we 

get all of those from beneficial microbes that are already in our microbiome. 

(Borges et al, 2009). 

● Just as Martian microbes could enter the human microbiome, they could also enter plant 

microbiomes as endophytes and those interactions need not be harmful, many could be 

beneficial. (Afzal et al, 2019) 

● New forms of yeast could be of interest in the food industry (Sarmiento et al, 2015). 

● Martian life could increase species richness by gene transfer to Earth microbes, leading 

to more biodiverse microbial populations. 

● Martian extremophiles could colonize microhabitats in deserts and eroded landscapes 

barely habitable to terrestrial life, helping with reversal of desertification 

● More efficient Martian microbes might be useful to generate biofuels from sunlight and 

water (Schenk et al, 2008) 

● Martian life might be accidentally toxic and control harmful microbes or insects 

● It could add a new domain of life with almost entirely beneficial interactions similarly to 

the Archaea 

● It could add new forms of multicellular life based on a different biochemistry, or 

multicellular life in a different domain of life from the eukaryotes, with a more ancient 

common ancestor. 

 

Even if introducing martian life is largely beneficial, it could 

still be harmful in some ecosystems or have mixed effects with 

some harms and some benefits 

 

However even if introducing terrestrial life is largely beneficial we still need caution. There would 

be not just one encounter in one ecosystem. Martian conditions may well favour 

polyextremophiles able to survive in a wide range of conditions.  

 

Chroococcidiopsis is perhaps our best analogue for a Martian cyanobacteria and it is a 

polyextremophile and found in many habitats throughout the world. Also the microbes would 

evolve eventually, and perhaps quickly, or change gene expression, and eventually find new 

habitats that they can colonize. 

 

Maybe some of these encounters would be beneficial in some ecosystems, while other 

ecosystems are degraded, possibly even by the same interactions with the same microbe. 

Similarly for organisms, some organisms may be benefited and others harmed.  
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To take an example, even if what we find on Mars is just a new strain of Chroococcidiopsis, it 

could have toxins, protoxins or accidentally toxic semiochemicals. As an example of this,  

microalgae produce accidental hepatotoxins that can damage livers of cattle and dogs that eat 

algal mats, a common occurrence in the Great Lakes (Hoff et al, 2007). Such toxins wouldn’t 

harm humans, since we don’t eat the algal mats, but are harmful to other creatures. Similarly 

even a new strain of chroococcidiopsis that developed in the very different conditions of Mars 

with the cold conditions, UV and ionizing radiation might produce accidental toxins that the 

terrestrial strains don’t produce and this would not be something one could decide from a gene 

sequence. 

 

The same Martian microbe may also have both harmful and beneficial effects on the same 

organism, or in the same ecosystem. Generally there might well be a mix of some beneficial and 

some harmful interactions.  

 

On the other hand the interactions could all be beneficial. To take an example, our planet is not 

necessarily optimal for global biomass (Kleidon, 2002). Perhaps extraterrestrial life with 

additional capabilities could enhance the productivity of the terrestrial Gaaia. 

 

Return of Martian life might create a new enhanced Gaia system that has significantly more 

surface biomass and biodiversity than the one we have today. It might even add new beneficial 

domains of life like the archaea or a new form of multicellularity which only enhances the 

diversity of our biosphere. 

 

We have nothing by way of previous experience to guide us here. 

 

Amongst a million civilizations that return unsterilized 

uncontained samples from biospheres of neighbouring 

planet, it could be almost all benefit their home biosphere, all 

the way through to almost all harm their home biosphere – 

currently we have insufficient knowledge to decide  

 

Amongst a million extraterrestrial civilizations that return a sample from a nearby biosphere with 

limited technological capabilities to contain it, we don’t know how many would find they have 

harmed the biosphere of their home world. It might be that 

 

• it is never seriously harmful, it usually leads to an enhanced Gaia, and is almost always 

a beneficial process. 

• Or the worst case may be true that most extraterrestrial biospheres are seriously 

degraded after their first uncontained unsterilized sample return from a nearby 

independently evolved biosphere 
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There is no way to know. 

 

Given the many examples we have seen of ways that independently evolved life could be 

harmful, the first possibility may seem implausible at first, that it’s almost always a beneficial 

process - but we simply don’t have the information needed to assign a probability.  

 

There are many potential explanations that could make the first case more plausible. Moving 

from the ones that rely most to the ones rely least on terrestrial evolution being optimal: 

 

• Perhaps terrestrial biology is optimal in ways we can’t yet understand. Perhaps life 

throughout the universe always or almost always has the same mirror sense, the same 

genetic bases, the same amino acids, even the same codon table and almost identical 

genetic language, error correction for the DNA, same ribosomes, same semiochemicals, 

same metabolites, etc. Perhaps all life evolves chemically almost identical rhodopsin, 

carotene, chlorophyll etc. What seems to us to be haphazard may be optimal in some 

way we can’t understand yet over all the other possibilities. Where terrestrial life has 

evolved multiple solutions such as the reason plants on Earth are green and early 

archaea are purple, perhaps this also happens identically in other star systems. 

 

This is hardest to motivate. The hardest to explain step is the selection of ordinary over 

mirror life as it is hard to see why either should be preferred biologically – but there have 

been attempts to explain this by abiotic physical processes. Many other steps seem 

implausible such as the codon table, amino acids, etc. However, based on current 

knowledge, it is also likely impossible to assign a probability to this. 

 

• Perhaps all life in our part of the universe, including neighbouring galaxies, is evolved 

from life that developed in the first few hundred million years at the time that the universe 

for a few tens of millions of years was universally at temperatures suitable for terrestrial 

life – and after that it evolved the same way because terrestrial life is optimal 

 

• Perhaps all the stars in our birth star cluster were seeded by an earlier star that passed 

through it - and then evolved in the same way because terrestrial life is optimal from then 

on. 

 

• Perhaps life develops the capability to transfer between planets early enough and this 

panspermia s frequent enough so that typically all the life in the same star system, or at 

least in the terrestrial planets of that star system is sufficiently synchronized to be 

compatible without major issues, and  perhaps microbes that can’t be transferred in this 

way evolve in compatible ways because terrestrial life is optimal from then on 

 

• Perhaps all life in most of the universe or in our galaxy has been seeded by an early 

advanced civilizations that filled the galaxy with self replicating automated seeder robots 

that work to ensure all life in all planets evolves in the same way and is compatible with 
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each other, and this technology continues to operate, with the robots continuing to seed 

new forms of life every few million years in our solar system,  possibly long after the 

originating civilization lost interest in the project and possibly maintained by the 

civilizations that are benefited by it. 

 

• Perhaps planets evolve multiple different biochemistries, but there are underlying 

principles of biology that we don’t yet understand that make those exobiologies almost 

always compatible and mutually beneficial when the biospheres collide, to the extent that 

harmful interactions almost never occur. 

 

• It could be that almost always the other planets in star systems have only prebiotic 

chemistry, or life that is so early in development not even mirror life could compete on the 

home planet. This last solution requires no optimization of terrestrial life. 

 

One way this could happen is if the early steps of evolution to the use of proteins, 

ribosomes and efficient fast replication rarely happen, and nearly all terrestrial planets 

have only abiotic organic chemistry, prebiotic synthesis, protocells, Woese's 

transformable cells with competition only at the level of the RNA and not at the cellular 

level,Ostwald's chrystals, naked RNA on clay, and other forms of early life or prebiotic 

chemistry that can't compete with more advanced life. If early life ribocells are possible, 

they may have doubling times of years even in warm conditions, and replication may be 

imperfect with many errors, with most daughter cells not surviving replication, making it 

hard for them to compete with modern life at all even with mirror biology 

 

That still leaves the potential of life that spread from Earth to Mars and then evoled their 

independently since then. However we may have overestimated the potential for 

panspermia. Also, panspermia is far harder from a high gravity planet such as Earth to 

Mars, so it could also be that no life has got to Mars since the early solar system and 

early life on Earth wasn’t capable of panspermia. That would be specific to civilizations in 

star systems where the other terrestrial planet became much harder to seed early in 

evolutionary history. 

 

This is also the scenario with greatest risk for forward contamination. Mars is our only 

nearby terrestrial planet and our only planet where we may be able to study prebiotic 

synthesis, abiotic organic chemistry. It might be that forward contamination could erase 

modern active traces of all these things, leaving only the possibility of studying them in 

sealed caves or subglacial lakes cut off from connection with the surface, or entombed in 

gypsum or halite, or in subsurface organics maintained at -73 C, in which case some of it 

may be revivable but it would be difficult to near impossible to study the complexity of 

modern dynamic processes at a planetary scale after forward contamination as this 

would be erased.  

 

In this scenario there is also some risk of accidentally reducing habitability of Mars to 
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humans in the forwards direction, for instance by inadvertently introducing methanogens 

that transform subsurface water reservoirs to calcite. 

 

What we discover on Mars and in the oceans of Europa, Enceladus and so on may help us to 

investigate the various possibilities, but so far we simply lack the data to do this. 

 

Likely need for some planetary protection if Mars does have a 

biosphere and has many species of life that could spread on 

Earth 

 

By analogy with Didymo, if there is life on Mars, even closely related, though many species may 

be harmless or beneficial, we may need to protect Earth from some of them. For KNOWN risks, 

protection could vary from 

 

• As for Didymo, astronauts need to be careful not to bring damp equipment back from 

Mars 

• Astronauts need to wash thoroughly with soap and sterilize surfaces with disinfectant and 

UF or fumigate the spacecraft 

• There may be human pathogens but if the quarantine period is less than 6 months they 

could be  detected during the journey back and the crew put into isolation if found 

The six months is long enough even for diseases with quarantine periods of months such 

as rabies. However as Carl Sagan said, the latency  period of leprosy is decades and 

then there’s the issue of symptomless carriers like typhoid Mary 

 

However, when we don’t know what is on Mars we don’t know how to protect Earth. The 

examples of mirror life, fungi of crops that are symptomless in humans, and initially slowly 

doubling cold loving psychrophiles show that in some cases there may simply be no way to 

protect Earth from the potential for life returned by astronauts. 

 

So it is vital to find out what is on Mars first before we can intelligently devise procedures to 

protect Earth and our astronauts. It will then probably not be an easy task to evaluate the impact 

of species from Mars on Earth and its environment.  

 

It will be far easier to prove an independently evolved lifeform unsafe than safe, and that’s likely 

to be true even for a species that’s closely related with some minor genetic differences until we 

know their implications, such as the example of a novel strain of chroococcidiopsis that we 

looked at above in Even if introducing martian life is largely beneficial, it could still be harmful in 

some ecosystems or have mixed effects with some harms and some benefits 
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[3rd separate paper could start here] The 

threshold for risk for the terrestrial biosphere 

should be a decision for the public not NASA 

when their scientist naturally have a high priority 

for completing this mission  - recommendations 

by many experts to set up an oversight agency in 

advance with experts in legal, ethical and social 

issues - ideally two years before the start of the legal 

process – this has not been done  

Provisional title: NASA’s many mistakes in its EIS for samples from Mars have MAJOR 

public interest and legal implications – because of the need to recognize the potential for 

a likely low risk of large scale harm to public health or the environment from an 

unsterilized sample return done incorrectly 

 

NASA and ESA clearly didn’t ‘do this or they would have produced a much more thorough EIS 

and would have engaged in far more outreach to the general public before submitting the EIS. 

 

With so much to be sorted out, Uhran et al recommended that an oversight agency should be 

set up long before the legal process starts. Uhran et al recommend this is done two years 

before filing the environmental impact statement to develop a consensus position on the margin 

of safety for sample containment (Uhran et al, 2019).  

Since the aim is to develop a consensus position, this would need to be based on up to date 

information. So it would need to include the review of the size limits required in the ESF sample 

return study (Ammann et al, 2012:PG). The current paper suggests the need to review filter 

technology and provide a preliminary study of the technological advances needed to achieve 

the specified size limits, since the technology doesn’t seem to exist yet. 

 

Rummel et al say that the oversight committee would need to contain experts in legal, ethical 

and social issues in addition to the experts in astrobiology, space engineering and mission 

planning. It should conduct ethical and public reviews. Broad acceptance by the public is 

essential at an early stage for success of the mission (Rummel et al, 2002).  

In  more detail, Rummel et al advise that clear communication with the public is essential from 

an early stage, for success of the mission. (Rummel et al, 2002). 
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Pages 94-5: As part of sample return planning, it will be important to develop an 

organized communication plan which will lay a strong foundation in public understanding 

and acceptance prior to the mission, and allow for an open dialogue with all sectors of 

the public. Such a plan should include consideration of the diverse questions, concerns, 

and issues likely to be raised, including those related to the mission and spacecraft 

operations, the sample return and Biohazard testing, the administrative and legal 

matters associated with the effort, and to the potential implications of discovering 

extraterrestrial life. 

Plans should be developed well in advance in order to avoid a frenzied, reactive mode of 

communications between government officials, the scientific community, the mass 

media, and the public.  

They recommend that this should avoid a NASA centric focus and include links with other 

government agencies and international partners and external organizations 

Any plan that is developed should avoid a NASA-centric focus by including linkages with 

other government agencies, international partners, and external organizations, as 

appropriate. It will also be advisable to anticipate the kinds of questions the public might 

ask, and to disclose information early and often to address their concerns, whether 

scientific or non-scientific. 

... 

Evaluations of the proposal should be conducted both internal and external to NASA and 

Centre National d’Etudes Spatiale (CNES) and the space research communities in the 

nations participating in the mission.  

They talk about the need for an ethical review which needs to be made publici early in the 

process.  

An ethical review should be conducted at least at the level of the Agencies participating 

and these reviews made public early in the process (in France, the national bioethics 

committee, Comité Consultatif National d'Ethique pour les Sciences de la Vie et de la 

Santé, CCNE, is the appropriate organization). 

They talk about the need to announce the final protocol broadly to the scientific community and 

they say broad acceptance at both lay public and scientific levels is essential for success. 

The final protocol should be announced broadly to the scientific community with a 

request for comments and input from scientific societies and other interested 

organizations. 

Broad acceptance at both lay public and scientific levels is essential to the overall 

success of this research effort. 
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They highlight the issues that could arise later on if extraterrestrial life is discovered. Including 

legal ownership questions 

In the long term, the discovery of extraterrestrial life, whether extant or extinct, in situ or 

within returned sample materials, will also have implications beyond science and the 

SRF per se. Such a discovery would likely trigger a review of sample return missions, 

and plans for both robotic and human missions. Legal questions could arise about 

ownership of the data, or of the entity itself, potentially compounded by differences in 

laws between the United States and the countries of international partners. 

Ethical, legal and social issues should be considered seriously. I think here where it says “in any 

event” it means whether or not they find life?  

In any event, ethical, legal and social issues should be considered seriously. Expertise in 

these areas should be reflected in the membership on appropriate oversight 

committee(s). 

They say that a central question is whether any protocol can be guaranteed to be risk free [I 

argue in my  paper that study above GEO in a telerobotic facility fulfils this condition as does 

sterilizing all samples] and ask what counts as an acceptable level of risk  

Page 96: Central to an understanding of the arguments is the question of risk, i.e., Can 

any protocol be guaranteed to be absolutely risk-free? If not, what is an acceptable level 

of risk (for example, one that approximates the risk from the natural influx of martian 

materials into Earth’s biosphere)? 

And, is there any treatment method that can eliminate all risks from the returned 

samples, while preserving them for the detailed scientific study envisaged by the 

scientific community? 

They also talk about the need to have a communication plan to address concerns and 

perceptions about the associated risks: 

Page 101: Communications Unusual or unprecedented scientific activities are often 

subject to extreme scrutiny at both the scientific and political levels. Therefore, a 

communication plan must be developed as early as possible to ensure timely, and 

accurate dissemination of information to the public about the sample return mission, and 

to address concerns and perceptions about associated risks.  

They talk about how the public and stakeholders need to be able to participate in an open, 

honest dialogue. 

The communication plan should be pro-active and designed in a manner that allows the 

public and stakeholders to participate in an open, honest dialogue about all phases of 

the mission with NASA, policy makers, and international partners. Risk  management 

and planetary protection information should be balanced with education/outreach from 
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the scientific perspective about the anticipated benefits and uncertainties associated with 

Mars exploration and sample return. 

They go on to talk about the process of informing the public of any discoveries. This must be 

decided well in advance 

The communication plan should also address how the public and scientific community 

will be informed of results and findings during Life Detection and Biohazard testing, 

including the potential discovery of extraterrestrial life. Because of the intense interest 

likely during initial sample receipt, containment, and testing, procedures and criteria 

should be developed in advance for determining when and how observations or data 

may be designated as “results suitable for formal announcement.”  

Details about the release of SRF information, the management of the communication 

plan, and its relationship to the overall communications effort of the international Mars 

exploration program should be decided well in advance of the implementation of this 

protocol 

They warn that potentially the sample return mission, and the facility, could also attract 

intentionally disruptive events, by bioterrorists, or by “radical” groups opposed to sample return 

(Rummel et al, 2002).  

 

Page 93: Concerns about security should also be reconsidered, especially in view of the 

potential disruptive activities of any terrorists or ‘radical’ groups that may be opposed to 

sample return. 

[NOTE] I can’t find it now, I thought Rummel at al warned about the sharing of viral 

misinformation. Maybe it was someone else. Does anyone reading this know the cite? That 

clearly is a concern after what happened in the COVID pandemic whoever it was that said it. 

Perhaps this may need to be managed based on the emerging discipline of infodemiology 

(WHO, 2020wic). 

 

Similarly the ESF recommends that since negative consequences from an unintended release 

could be borne by countries not involved in the program, a framework should be set up at the 

international level open to representatives of all countries, with mechanisms and fora dedicated 

to ethical and social issues of the risks and benefits from a sample return (Ammann et al, 

2012:59).  
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RECOMMENDATION 3 

Potential risks from an MSR are characterised by their complexity, uncertainty and 

ambiguity, as defined by the International Risk Governance Committee’s risk 

governance framework. As a consequence, civil society, the key stakeholders, the 

scientific community and relevant agencies’ staff should be involved in the process of 

risk governance as soon as possible. 

In this context, transparent communication covering the accountability, the benefits, the 

risks and the uncertainties related to an MSR is crucial throughout the whole process. 

Tools to effectively interact with individual groups should be developed (e.g. a risk map). 

RECOMMENDATION 4 

Potential negative consequences resulting from an unintended release could be borne 

by a larger set of countries than those involved in the programme. It is recommended 

that mechanisms and fora dedicated to ethical and social issues of the risks and benefits 
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raised by an MSR are set up at the international level and are open to representatives of 

all countries 

This again would be best done before the start of the legal process to make sure everyone is on 

the same page before it starts. 

. As Randolph put it (Randolph, 2009:292). 

 

The risk of back contamination is not zero. There is always some risk. In this case, the 

problem of risk - even extremely low risk - is exacerbated because the consequences of 

back contamination could be quite severe. Without being overly dramatic, the 

consequences might well include the extinction of species and the destruction of 

whole ecosystems. Humans could also be threatened with death or a significant 

decrease in life prospects 

In this situation, what is an ethically acceptable level of risk, even if it is quite low? 

This is not a technical question for scientists and engineers. Rather it is a moral 

question concerning accepting risk. Currently, the vast majority of the people 

exposed to this risk do not have a voice or vote in the decision to accept it. Most of the 

literature on back contamination is framed as a discourse amongst experts in planetary 

protection. Yet, as I've already argued, space exploration is inescapably a social 

endeavor done on behalf of the human race. Astronauts and all the supporting engineers 

and scientists work as representatives of all human persons. 

… 

In this situation to treat persons with dignity and justice means that everyone should 

have the opportunity to voice their opinion concerning whether humans should accept 

the risk.  

… 

1. The best practices of planetary protection must be followed. … Yet 

pursuing best practices by itself does not necessarily guarantee an 

ethically acceptable level of risk.  

2. There should be opportunities for open comment by those individuals or 

groups that have concerns about the risks of back contamination. These 

comments should be taken seriously and NASA should publicly respond 

to these concerns. 

3. A committee of neutral or disinterested persons should review the 

planetary protection measures for return of spacecraft and samples. This 

committee should include persons with a diversity of expertise, including 

ecology, biology, chemistry, specialists in risk analysis, and ethicists. The 

ethicists should represent a diversity of philosophical and religious 

perspectives. 
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4. The entire process of soliciting comment, analysing the risk factors and 

deciding on whether the risk levels are ethically acceptable should be 

transparent to the interested public. 

 

NASA did set up a review board for sample return missions on August 14th 2020 (NASA, 

2020nebmsr). However, from the draft EIS and the responses to the public within it, it is clear 

that it can’t have been set up to consider these wide ranging issues, or include experts in legal, 

ethical and social issues, as recommended by (Rummel et al, 2002) and  (Randolph, 2009:292). 

Indeed, from the content of the draft EIS and the reactions in comment replies, it seems unlikely 

that these issues have been considered at all in the process of developing the EIS. 

Once the potential for large scale effects is recognised this 

leads to a legal process that is likely to extend by many more 

years with involvement of CDC, DOA , NOAA, OSHA etc., 

legislation of EU and members of ESA, international treaties, 

and international organizations like the World Health 

Organization – NASA don’t seem to be prepared for this or even 

mention potential international ramifications  

 

The EIS as it stands now essentially says that they are certain there is no life on Mars and that 

they are doing these precautions out of an “abundance of caution”. If this is the final decision, 

other agencies in the USA as well as other countries and international organizations will likely 

conclude that there is nothing here for the DOA, CDC. NOAA, OSHA, WHO, FOA, UNEP etc. to 

look at. 

 

There is still the presidential directive NSC-25 requires a review of large scale effects which is 

done after the NEPA process is completed. (Race, 1996) 

 

This directive says (Whitehouse, 1977): 

 

“It should be understood that experiments which by their nature could be reasonably 

expected to result in domestic or foreign allegations that they might have major or 

protracted effects on the physical or biological environment or other areas of public or 

private interest, are to be included under this policy even though the sponsoring agency 

feels confident that such allegations would in fact prove to be unfounded. 

 

So these other agencies may develop an interest as a result of that directive if the EIS isn’t 

challenged and goes through. 
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There is potential for many delays in the legal process after the filling of the EIS (EPA, n.d.). 

First, since there is a potential for damage to Earth’s environment, various executive orders 

mandate NASA itself, as a federal agency, to consider such matters as  (NASA, 2012fdg):  

● impact on the environment,  

● impact on the oceans,  

● impact on the great lakes,  

● escape of invasive species,  

● lab biosecurity against theft 

After the environmental impact statement is filed, Uhran et al mention many other agencies 

likely to declare an interest such as the (Uhran et al, 2019) (Meltzer, 2012:454) 

 

● CDC (for potential impact on human health),  

● Department of Agriculture (for potential impact on livestock and crops),  

● NOAA (for potential impact on oceans and fisheries after a splashdown in the sea) 

● Occupational Safety and Health Administration, to consider questions of quarantine if a 
scientist or technician gets contaminated by a sample 

● Department of Homeland Security, 

● Federal Aviation Administration because the sample returns through the atmosphere 

● Department of Transportation for bringing the sample to the receiving laboratory from 

where it touches down and to distribute to other laboratories 

● Occupational Safety and Health Administration - for any rules about quarantine for 

technicians working at the facility 

● U.S. Customs and Border Protection and the Coast Guard to bring back sample in case of 

an water landing or the Department of Defense if it lands on land, likely the Utah Test & 

Training Ranges 

● Department of the Interior which is the steward for public land and wild animals which 

could be affected by release of Martian microbes 

● Fish and Wildlife Service for the DoI who maintain an invasive species containment 

program and may see back contamination as a possible source of invasive species 

● National Oceanic and Atmospheric Administration (NOAA)'s fishery program for sea 

landing in case it could affect marine life and NOAA fisheries 

● Integrated Consortium of Laboratory Networks (ICLN) for laboratories that respond to 

disasters - a partnership of the Department of Agriculture, Department of Defense, 

Department of Energy, Department of Health and Human Services, Department of 

Homeland Security, Department of the Interior, Department of Justice, Department of 

State, and Environmental Protection Agency 

● The state where the receiving laboratory is stationed may have regulations on invasive 

species, environmental impacts, disposal of waste, and possession of pathogens, similarly 

also for any states the sample may have to transit to from the landing site to the facility 
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As the process continues it is possible to stop the activity. It’s the same process that is used for 

instance. to stop oil pipelines across tribal lands in the USA or almost any US environmental 

legal action.  

 

The Congressional Research Service explains (Congressional Research Service, 2021) that 

NEPA doesn’t provide for judicial review directly. But it’s often a ground for litigation on the basis 

that the process hasn’t been carried out properly.  

For instance judicial review can be requested because 

• the agency failed to consider some of the impacts 
• the agency failed to properly consider the weight of the impacts under review 

During the litigation the court can issue injunctions that 

• bar all or part of a proposed action 

The result of the court case is usually 

• referred back to the agency (such as NASA) for further proceedings - and the court can 
say what those are 

• It  can order equitable relief which vacates the action - i.e. stops the project going ahead 
• Or issue some other action. 

The “ordinary” remedy is to just vacate the Federal action so it can’t go ahead, but the courts 
consider the “seriousness” of the deficiencies in the EIS and the “disruptive consequences” of 
vacating the action (Congressional Research Service, 2021). 

So the courts can just stop the whole thing - or they could require some injunction on NASA. In 

this case, one example injunction might be that NASA have to sterilize all samples returned to 

Earth until proven to be safe, if they assess that NASA haven’t taken account of all possible 

impacts or they haven’t sufficiently considered the weight of the impacts. 

Meanwhile, since this is a joint NASA / ESA mission, it involves ESA. Most of the ESA member 

states are in the EU (ESA, n.d.MS) so the EU will get involved. 

 

This leads to a separate legal process in Europe, starting with the Directive 2001/42/EC (EU, 

2001). I haven’t located any academic reviews for the European process, but as for the case in 

the USA, this would spin off other investigations which would involve the European Commission 

(Race, 1996).  

 

The UK, as a member of ESA but not in the EU, might also be involved in a separate process 

with its domestic laws. Canada also sits on the governing council of ESA, so perhaps may get 

involved. These countries are all members of ESA and also all potentially impacted by an 

adverse outcome. 
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However it wouldn’t stop at the USA and ESA. All other countries are potentially impacted in the 

worst case. These potential impacts on the environment of Earth, and on human health world-

wide bring many international treaties into play (Uhran et al, 2019), 

 

In an address given to the Space Studies Board Task Group on Issues in Sample 

Return in 1996, attorney George Robinson presented a list of 19 treaties or 

international conventions and 10 domestic categories of law, including the rights 

of individual states and municipalities to quarantine, that may affect return 

missions. 

These lists include treaties governing the use of the air and sea, environmental 

protection treaties, the constitution of the World Health Organization (WHO), and 

treaties related to outer space as well as the Administrative Procedure Act 

(Robinson, 1996). 

[Need to find out more details here] 

Also several international organizations are likely to be involved such as the WHO (Uhran et al, 

2019).  

We will see below that the very worst case scenarios involve degradation of Earth’s 

environment (such as by mirror life). 

 

It seems unlikely that these worst case scenarios would be ignored as the legal proceedings 

continue. If the legal discussions expand to focus on these scenarios, this could involve many 

other organizations. 

 

The Food and Agriculture Organization (UN, 1945) could become involved, especially if the 

potential for alien exobiology such as mirror life is considered, because of potential impact on 

agriculture and fisheries and global food supplies, and the World Health Organization because 

of effects on human health globally if a new organism is returned that can be spread to other 

countries.  

 

In the USA, the Environmental Protection Agency partners with the United Nations Environment 

Program (UNEP), and Arctic Council, so they’d likely get involved (EPA, n.d.pwio). 

 

Indeed, there would be few aspects of human life that would not be relevant in some way in 

discussions of the very worst case scenarios. As the legal process continues, surely there would 

be open public debate about these scenarios, and if the discussion expands in this way, 

potentially it might lead to much wider involvement in the international community. It would be 

necessary to convince the public, and interested experts in all these agencies that this is a safe 

mission and that all their concerns have been answered.  

Race (Race, 1996) says that experts will have challenges deciding in advance whether the 

sample should be classified as potentially: 
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• an infectious agent 

• an exotic species outside its normal range 

• a truly novel organism (as for genetic engineering) 

• a hazardous material 

The choices here would change which laws and agencies would be involved. 

Presidential directive NSC-25 requires a review of large scale effects which is done after the 

NEPA process is completed. (Race, 1996) 

There are numerous treaties conventions and international agreements relating to environmental 

protection or health that could apply. 

Including those to do with (Race, 1996) 

• protection of living resources of the sea 

• air pollution (long range pollution that crosses country boundaries) 

• world health, etc 

Individual groups in other countries could invoke domestic laws such as laws on accidents at sea 

or on land if they argue back contamination of Earth can cause measurable damage. (Race, 

1996) 

Race says scientists are likely to focus on (Race, 1996) 

• technical details 

• mission requirements 

• engineering details 

• costs of the space operations and hardware 

General public are likely to focus on 

• risks and accidents 

• whether NASA and other institutions can be trusted to do the mission 

• worst case scenarios 

• whether the methods of handing the sample, quarantine and containment of any Martian 

life are adequate 

 



103 of 176 

The legal process and public debate for NASA’s mission as 

precedent for China’s mission to return a sample too – 

perhaps as soon as 2030 – and any other countries that might do 

so - with sterilization a likely solution for a country that wants to be 

first to return a sample 

China currently plans to launch a mission possibly as soon as 2028, to return a sample by 2030. 

It would consist of two rockets, one with a lander and ascent vehicle, and the other with an 

orbiter and reentry capsule to return the sample to Earth, using two Long March rockets (Jones, 

2021)  

 

China had one of the most rigorous of all responses to the COVID pandemic. Professor Bruce 

Aylward, leader of the joint team that studied their response (McNeil, 2020) put it like this in the 

press briefing about their findings (United Nations, 2020) 

 

They [the Chinese] approached a brand new virus [that] has never been seen 

before that was escalating and quite frightening in January … and they have taken 

very basic public health tools … and applied these with a rigor and an innovation 

of approach on a scale that we've never seen in history 

 

If China considers the Mars sample return to be potentially hazardous it is likely to be especially 

careful just as it has been especially careful with COVID. 

 

The debate that is sure to happen with the NASA mission will help bring widespread awareness 

of the issues of a sample return and the need to be careful. 

 

 

 

 

References (some quotations included to assist 

verification) 

[Uses Harvard reference style, but in this draft, instead of a, b, c etc., I use unique ids like 

(NASA, 2020tesgs) - the idea is to search / replace these ids with a, b, c etc once the list is 

complete, after peer review] 



104 of 176 

A 
 

7th Circuit, 1997, Simmons v. U.S. Army Corps of Engineers, 120 F.3d 664  

Abdo, J.M., Sopko, N.A. and Milner, S.M., 2020. The applied anatomy of human skin: a model 

for regeneration. Wound Medicine, 28, p.100179. 

Approximately every 28 days, fully differentiated cuboidal basal keratinocytes with large 

nuclei, abundant organelles, and a phospholipid membrane migrate apically from the 

basal layer through the spinous and granular layers [4]. During this turnover process, an 

accumulation of keratin and lipids ensues which then undergoes terminal differentiation 

to form the stratum corneum 

… 

Skin is an active immunological organ, and dysfunctional innate defenses have serious 

clinical implications. Products of the stratum corneum, including free fatty acids, polar 

lipids, and glycosphingolipids accumulate in the intercellular spaces and horny layer, 

exhibiting antimicrobial properties, and functioning as a first line of defense. 
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Trainer herself does not rule out a biological explanation, but nevertheless underscores 

its unlikeliness. “People in the community like to say that it will be the explanation of last 

resort, because that would be so monumental,” she says. There are abiotic mechanisms 

aplenty, both known and unknown, to rule out first before leaping to any more 

sensational claims. 
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A single U.S. facility ticking all of these boxes could cost around $500 million, Dreier 

says. And it is not yet clear if others will be built in Europe 

... 

MSR’s masters are foregoing parachutes because the devices cannot be guaranteed to 

work, Vijendran says—something immortalized in 2004 by the solar-wind-particle-

gathering Genesis mission, whose sample capsule broke open after an unintentional 
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an interesting one.” 
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"Two strategies have been suggested for seeking signs of life on Mars: The 

aggressive robotic pursuit of biosignatures with increasingly sophisticated 

instrumentation vs. the return of samples to Earth (MSR). While the former strategy, 

typified by the Mars Science Laboratory (MSL), has proven to be painfully 

expensive, the latter is likely to cripple all other activities within the Mars program, 

adversely impact the entire Planetary Science program, and discourage young 

researchers from entering the field." 

"In this White Paper we argue that it is not yet time to start down the MSR path. We 

have by no means exhausted our quiver of tools, and we do not yet know enough to 

intelligently select samples for possible return. In the best possible scenario, 

advanced instrumentation would identify biomarkers and define for us the nature of 

potential sample to be returned. In the worst scenario, we would mortgage the 

exploration program to return an arbitrary sample that proves to be as ambiguous 

with respect to the search for life as ALH84001." 
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Some clusters of dozens of diatoms appear pristine, suggesting that they had been living 

in the salar pool immediately before being trapped as the gypsum crystal grew. 

 

Could microfossils and/or viable microorganisms be trapped in gypsum on Mars as they 

are in gypsum on Earth? It is likely that abundant sulfate sand grains on Mars contain 

fluid inclusions similar to those in the acid-precipitated bottom-growth and reworked 

gypsum we discuss here. 
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We suggest that gypsum on Mars would have entrapped, as solid inclusions and within 

fluid inclusions, any microorganisms and/or organic compounds that were present in its 

parent waters. Therefore, fluid inclusions and solid inclusions hosted by salt minerals 

may be the best place to continue the search for life on Mars. 

 

Some of these entrapped microorganisms remain viable for at 2016. The cosmic zoo: the (near) 

inevitability of the evolution of complex, macroscopic life. Life, 6(3), p.25. 

 

Photosynthesis is primarily useful for providing energy for the reduction of environmental 

carbon ... 

 

There are six known pathways for fixing carbon dioxide, of which the Calvin Cycle used 

in oxygenic phototrophs is the least efficient in terms of the energy and the reducing 

equivalents (electrons) required per mole of fixed CO₂ ... 
 

 

However, the great advantage provided by oxygenesis was its capacity to liberate life 

from the need to find rare electron donors such as sulphide, hydrogen or Fe(II) to 

support the reduction of carbon dioxide, giving oxygenic photosynthesisers an 

advantage over all other forms of life ... 

 

There are six known pathways for fixing atmospheric carbon, of which the Calvin Cycle 

used in oxygenic phototrophs is the least efficient in terms of the energy and the 

reducing equivalents (electrons)required per mole of fixed CO₂. Rubisco has a very low 

turnover for fixing carbon, and its carboxylase activity is compromised by opposing 

oxygenase activity that uses molecular oxygen to break down Ribulose-1,5-

bisphosphate rather than fix CO₂ into it. Despite this, the first inventor of water-splitting 

was successful, and filled the niche ... 

 

Oxygenesis evolved only once. There are two possible explanations for this. One is that 

it is a Random Walk process, requiring a sequence of unlikely evolutionary steps, which 

would not have evolved elsewhere. The hypotheses on the origins of oxygenesis above 

hint this may not be the case, but do not prove it. The other explanation is that the 

evolution of oxygenesis is a Many Paths process, one which has a high probability of 

occurring, but is also a Pulling Up the Ladder event, such that once oxygenesis evolved 

once that evolution removed the preconditions for its evolution again, in this case filling 

the niche of a photosynthesiser freed from limitation of an electron donor supply. The 

biochemistry of oxygenic photosynthesis points toward this second explanation. 

Bandfield, J.L., Glotch, T.Dleast tens of thousands of years ... and possibly for hundreds 

of millions of years 
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These small, spherical, lipid membrane-bound structures typically range in size from ~20 

to 200 nm diameter and provide a means for cells to interact with their environment over 

both spatial and temporal scales 

Perhaps one of the most striking features of extracellular vesicles is that they can 

contain nucleic acids (Dorward et al., 1989; Valadi et al., 2007; Rumbo et al., 2011; Biller 

et al., 2014). DNA fragments of diverse sizes, ranging from hundreds of bp to >20 kb 

have been reported in vesicles from Gram-negative bacteria, Gram-positive bacteria, 

archaea and eukaryotes, and include genomic, plasmid and viral DNA (Dorward and 

Garon, 1990; Klieve et al., 2005; Soler et al., 2008; Biller et al., 2014; Gaudin et al., 

2014; Jiang et al., 2014; Grande et al., 2015; Yáñez-Mó et al., 2015). As such, vesicles 

can function as vehicles of horizontal gene exchange (Yaron et al., 2000; Renelli et al., 

2004; Klieve et al., 2005). Shotgun sequencing of vesicle-associated DNA from ocean 

samples has revealed sequences from diverse bacteria, archaea and eukaryotes (Biller 

et al., 2014), suggesting that vesicles could be an important mechanism mediating gene 

transfer among marine microbes. 
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Our results suggest that bacteria might indeed survive on Mars if shielded from UV, for 

instance by martian dust, since it is known that a few millimeters of soil is enough for UV 

protection (Mancinelli and Klovstad, 2000; Cockell and Raven, 2004). In view of the 

resistance of desert strain of Chroococcidiopsis to ionizing radiation (Billi et al., 2000; 

Verseux et al., 2017), the exposure in LEO to a total dose of 0.5 Gy of ionizing radiation 

did not affect biofilm survival. Hence, based on the dose of 76 mGy/year measured by 

the Curiosity rover at Gale Crater’s surface (Hassler et al., 2013), dried biofilms would 

survive on Mars more than half a decade. In addition, since the UV dose received in 

LEO corresponds to approximately 8 h under a Mars UV flux at the equator (Cockell et 

al., 2000), the speculated biofilm survival supports the possible dissemination of viable 
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organisms. If carried, for instance, by winds at 5 m/sec (Gomez-Elvira et al., 2014) with 

the average flux mentioned above, they could travel more than 100km without dying. 

However, other factors found on Mars need to be taken into account so as to reduce the 

planetary protection risk, such as the presence of perchlorates that have been shown to 

be highly damaging to life (Wadsworth and Cockell, 2017) 
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In this experiment, survival of the Chroococcidiopsis strain occurred only with those cells 

that were mixed with martian regolith simulant and plated as thin layers (about 15–

30 μm, corresponding to 4–5 cell layers).  

… Our finding suggests that a putative microbial life-form at least as resistant to 

desiccation and radiation as the investigated desert cyanobacterium could withstand 

some exposure to UV on the martian surface. 

… Our findings support the hypothesis that opportunistic colonization of protected niches 

on Mars, such as in fissures, cracks, and microcaves in rocks or soil, could have 

enabled life to remain viable while being transported to a new habitat 
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volatiles, which would likely not be heated to a great degree and which would have had 
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remaining mineral-bound even at high temperatures up to 1000K (Stimpfl et al. 2007). 
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abundance of lunar water is depleted to 10−6 terrestrial, one should still expect over 

1010 tonnes endogenous to the Moon, and it is unclear that later differentiation would 

eliminate this. This residual quantity of water would be more than sufficient to concern us 

with the regolith seepage processes outlined above. 
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cores from the formation (Lorenz et al., 1996) yielded thermophilic Fe(III)-reducing 

bacteria that were capable of producing prodigious quantities of siderite (Roh et al., 
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al., 2008). 
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Plans should be developed well in advance in order to avoid a frenzied, reactive mode of 

communications between government officials, the scientific community, the mass 

media, and the public. Any plan that is developed should avoid a NASA-centric focus by 

including linkages with other government agencies, international partners, and external 

organizations, as appropriate. It will also be advisable to anticipate the kinds of 

questions the public might ask, and to disclose information early and often to address 

their concerns, whether scientific or non-scientific. 

... 

Evaluations of the proposal should be conducted both internal and external to NASA and 

Centre National d’Etudes Spatiale (CNES) and the space research communities in the 

nations participating in the mission. An ethical review should be conducted at least at the 

level of the Agencies participating and these reviews made public early in the process (in 

France, the national bioethics committee, Comité Consultatif National d'Ethique pour les 

Sciences de la Vie et de la Santé, CCNE, is the appropriate organization). The final 

protocol should be announced broadly to the scientific community with a request for 

comments and input from scientific societies and other interested organizations. Broad 

acceptance at both lay public and scientific levels is essential to the overall success of 

this research effort. 

In the long term, the discovery of extraterrestrial life, whether extant or extinct, in situ or 

within returned sample materials, will also have implications beyond science and the 

SRF per se. Such a discovery would likely trigger a review of sample return missions, 

and plans for both robotic and human missions. Legal questions could arise about 

ownership of the data, or of the entity itself, potentially compounded by differences in 

laws between the United States and the countries of international partners. In any event, 

ethical, legal and social issues should be considered seriously. Expertise in these areas 

should be reflected in the membership on appropriate oversight committee(s). 

 

Page 101: Communications Unusual or unprecedented scientific activities are often 

subject to extreme scrutiny at both the scientific and political levels. Therefore, a 

communication plan must be developed as early as possible to ensure timely, and 

accurate dissemination of information to the public about the sample return mission, and 

to address concerns and perceptions about associated risks. The communication plan 

should be pro-active and designed in a manner that allows the public and stakeholders 

to participate in an open, honest dialogue about all phases of the mission with NASA, 

policy makers, and international partners. Risk  management and planetary protection 

information should be balanced with education/outreach from the scientific perspective 

about the anticipated benefits and uncertainties associated with Mars exploration and 

sample return.  

The communication plan should also address how the public and scientific community 

will be informed of results and findings during Life Detection and Biohazard testing, 
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including the potential discovery of extraterrestrial life. Because of the intense interest 

likely during initial sample receipt, containment, and testing, procedures and criteria 

should be developed in advance for determining when and how observations or data 

may be designated as “results suitable for formal announcement.” Details about the 

release of SRF information, the management of the communication plan, and its 

relationship to the overall communications effort of the international Mars exploration 

program should be decided well in advance of the implementation of this protocol. 
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temperature, and negligible radiation. That autochthons evolving with the changing 

environment could also survive under these conditions is far from inconceivable. 
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contains a substantial fraction of ferric oxides, which are extremely strongly absorbing in 

the near ultraviolet. ... A terrestrial microorganism imbedded in such a particle can be 

shielded from ultraviolet light and still be transported about the planet." 

… 

"A single terrestrial microorganism reproducing as slowly as once a month on Mars 

would, in the absence of other ecological limitations, result in less than a decade in a 

microbial population of the Martian soil comparable to that of the Earth's. This is an 

example of heuristic interest only, but it does indicate that the errors in problems of 

planetary contamination may be extremely serious." 

 

Sagan, C., 1973, The Cosmic Connection - an Extraterrestrial Perspective  

I reach this conclusion reluctantly. I, myself, would love to be involved in the first 

manned expedition to Mars. But an exhaustive program of unmanned biological 

exploration of Mars is necessary first. The likelihood that such pathogens exist is 

probably small, but we cannot take even a small risk with a billion lives. Nevertheless, I 

believe that people will be treading the Martian surface near the beginning of the twenty-

first century. 
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after human beings have walked the sands of Mars. What then? What shall we do with 

Mars? 

 

There are so many examples of human misuse of the Earth that even phrasing this 

question chills me. If there is life on Mars, I believe we should do nothing with Mars. 

Mars then belongs to the Martians, even if the Martians are only microbes. The 

existence of an independent biology on a nearby planet is a treasure beyond assessing, 
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high light levels capture the bulk of the light, but waste upto∼90% of the energy as 

fluorescence and heat [122,134]. 
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decreasing levels of light the further they are from the illuminated surface (see“Open 

PondSystems”section). These shaded cells are prevented from capturing enough solar 

energy to drive photosynthesis efficiently. This in turn drastically reduces the efficiency 

of the overall culture.In contrast, small antenna cell lines with reduced LHCIIlevels have 

the advantage that they improve the light penetration into the bioreactor (Fig.7a) and 

better match itto the energy requirements of each photosynthesizing cell. Thus small 

antenna cells at the bioreactor surface absorb only the light that they need, largely 

eliminating fluores-cence of excess energy. This in turn allows more light (i.e.the light 

wasted in wild-type as fluorescence and heat) to penetrate into the bioreactor so that 

even cells deeper in the culture have a near optimal exposure to light  
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bacteria and fungi  
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These mats are capable of engulfing the stream bottom, smothering native species of 

plants, insects, mollusks, and algae, and reducing habitat for insects for aquatic insects 

and fis 

Streams outside the Great Lakes region harshly impacted by these mats have seen 

invertebrate populations decrease, macrophyte elimination, and absence of fish 

It has been hypothesized that a new strain of Didymosphenia geminata is now dominant 

(Bothwell et al., 2006), and is responsible for the invasive behaviour. However, the 

presence of a new genetic strain has not been established…. 
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Some clusters of dozens of diatoms appear pristine, suggesting that they had been living 

in the salar pool immediately 

 

before being trapped as the gypsum crystal grew. 

 

Could microfossils and/or viable microorganisms be trapped in gypsum on Mars as they 

are in gypsum on Earth? It is likely that abundant sulfate sand grains on Mars contain 

fluid inclusions similar to those in the acid-precipitated bottom-growth and reworked 

gypsum we discuss here. 

We suggest that gypsum on Mars would have entrapped, as solid inclusions and within 

fluid inclusions, any microorganisms and/or organic compounds that were present in its 

parent waters. Therefore, fluid inclusions and solid inclusions hosted by salt minerals 

may be the best place to continue the search for life on Mars. 

 

Some of these entrapped microorganisms remain viable for at least tens of thousands of 

years ... and possibly for hundreds of millions of years 
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