# 2. 2. | ../petermulkers/dec2frac | Show tree |
example :
given decimal number: 1.13207...
r0= 1.13207...
r1 = 1/(O.13207...) = 7.57142...
r2 = 1/(0.57142...) = 1.75
r3 = 1/(0.75) = 1.33333...
r4 = 1/(0.33333...) = 3
p = r0*r1*r2*r3*r4 = 60fraction: p/q = 60/53
q = r1*r2*r3*r4 = 53
Why does this work ?
The product of all the remainders in a finite
continued-fraction equals the most simple numerator.
p/q = [a0;a1,a2,a3,...an]
p/q = [a0;a1,a2,a3,...rn]
...
p/q = [a0;a1,a2,r3]
p/q = [a0;a1,r2]
p/q = [a0;r1]
p/q = r0p = r0*r1*r2*r3*...*rn
Theorems:
finite continued fraction :
[a0;a1,a2,a3,…,a(k-1),ak,a(k+1),…,a(n-1),an]A finite continued fraction is rational,
[a0;a1,a2,a3,…,a(k-1),ak,a(k+1),…,a(n-1),an] = p/qremainder :
rk = [ak,a(k+1),…,a(n-1),an]each remainder of a continued fraction can
rk = ak + 1/r(k+1) (1)
When the continued fraction is finite, so are
the remainders, and so they can be represented
by normal fractions.
rk = pk/qk (2)
The last remainder of a finite continued fraction
is
a whole number so its denominator equals 1.
rn = pn/qn = pn/1
qn = 1 (3)
The relation between numerators and denominators
of succesive remainders :
rk = ak + 1/r(k+1) (1)and so
pk/qk = ak + 1/(p(k+1)/q(k+1)) (2)in((1)
pk/qk = ak + q(k+1)/p(k+1)
pk/qk = (ak*p(k+1) + q(k+1)) / p(k+1)
pk = ak*p(k+1) + q(k+1)and
qk = p(k+1) or pk = q(k-1) (4)
What we want to proof:
r0*r1*r2*…*r(n-1)*rn =? p0implement:(2)
(p0/q0)*(p1/q1)*(p2/q2)*…*(p(n-1)/q(n-1))*(pn/qn) =? p0implement:(3)
(p0/q0)*(p1/q1)*(p2/q2)*…*(p(n-1)/q(n-1))*(pn/1) =? p0implement:(4)
(p0/q0)*(p1/q1)*(p2/q2)*…*(p(n-1)/q(n-1))*pn =? p0
(p0/q0)*(p1/q1)*(p2/q2)*…*(p(n-1)/q(n-1))*q(n-1) =? p0implement:(4)
(p0/q0)*(p1/q1)*(p2/q2)*…*p(n-1) =? p0
(p0/q0)*(p1/q1)*(p2/q2)*…*q(n-2) =? p0implement:(4)
…
(p0/q0)*(p1/q1)*(p2/q2)*q2=? p0
(p0/q0)*(p1/q1)*p2=? p0
(p0/q0)*(p1/q1)*q1=? p0implement:(4)
(p0/q0)*p1 =? p0
(p0/q0)*q0 =? p0
p0 = p0
Proof with 3th order (n=3) continued fraction:
r0*r1*r2*r3 =? p0
(p0/q0)*(p1/q1)*(p2/q2)*(p3/q3) =? p0
(p0/q0)*(p1/q1)*(p2/q2)*(p3/1) =? p0
(p0/q0)*(p1/q1)*(p2/q2)*(q2/1) =? p0
(p0/q0)*(p1/q1)*p2=? p0
(p0/q0)*(p1/q1)*q1=? p0
(p0/q0)*p1 =? p0
(p0/q0)*q0 =? p0
p0 = p0
Peter Mulkers
Belgium
P.Mulkers@GMX.net