This is an Opt In Archive . We would like to hear from you if you want your posts included. For the contact address see About this archive. All posts are copyright (c).

- Contents - Hide Contents - Home - Section 7

Previous Next

6000 6050 6100 6150 6200 6250 6300 6350 6400 6450 6500 6550 6600 6650 6700 6750 6800 6850 6900 6950

6750 - 6775 -



top of page bottom of page up down


Message: 6750 - Contents - Hide Contents

Date: Mon, 14 Apr 2003 16:44:02

Subject: Re: Canonical homomorphisms revisted

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx "wallyesterpaulrus"
<wallyesterpaulrus@y...> wrote:

> what do you make of monz's use of the term "internal homomorphism" on > this page: > > more on the duodene * [with cont.] (Wayb.)
It makes no sense to me. Oh well. :)
> anyway, so miracle doesn't want to have 2 as a generator? then what > does the scale "really" look like?
72-et with slightly flattened octaves, perhaps.
top of page bottom of page up down


Message: 6751 - Contents - Hide Contents

Date: Mon, 14 Apr 2003 05:23:36

Subject: Re: Canonical homomorphisms revisted

From: wallyesterpaulrus

what do you make of monz's use of the term "internal homomorphism" on 
this page:

more on the duodene * [with cont.]  (Wayb.)

?

anyway, so miracle doesn't want to have 2 as a generator? then what 
does the scale "really" look like?

--- In tuning-math@xxxxxxxxxxx.xxxx "Gene Ward Smith" <gwsmith@s...> 
wrote:
> The problem with my first definition is that it works beautifully when > it works, but it doesn't always work (1/2 time in the 5-limit, 1/4 of > the time in the 7-limit, and so forth.) Taking it as a source of > inspiration, here is a definition which works in general. > Unfortunately it no longer is as slick as goose grease. > > If T is a temperament, call q a "subgroup comma" for T if q>1 is not a > power of anything else, and if only three primes are involved in its > factorization (these commas are easily found from the wedgie.) Call a > prime "reducible" if it appears by itself in either numerator or > denominator for the factorization of a subgroup comma. If T is > p-limit, let P be the set of primes <= p, and let R be the set of > reducible primes. Then N = P\R is the set of non-reducible primes. If > card(N) = g, where g is the number of generators (2 for a linear > temperament, 3 for a planar temperament, and so forth) then set G = N. > If card(N)<g, then fill it out by adding the smallest of the remaining > primes, and set the result to G; if card(N)>g, then reduce it by > removing the largest of the primes in N, and call that G. We end with > a set G of primes such that card(G)=g, and we may use G as a set of > generators for the temperament T. > > Strange as it may seem, this definition actually corresponds to my > previous one in those cases where the previous one gives a > homomorphism. It also seems to give us reasonable results, or at least > so it seems to me, YMMV. Here is what we get for meantone and miracle; > I give the mapping of the generators (2 and 3/2 in the case of > meantone, 2 and 16/15 in the case of miracle), and the mapping applied > to primes: > > 5-limit meantone 81/80 > Generators [2, 5^(1/4)] > Prime mapping [2, 2*5^(1/4), 5] > > 7-limit meantone [1, 4, 10, 4, 13, 12] > Generators [2, 2^(3/10)*7^(1/10)] > Prime mapping [2, 2*2^(3/10)*7^(1/10), 2*2^(1/5)*7^(2/5), 7] > > 11-limit meantone [1, 4, 10, 18, 4, 13, 25, 12, 28, 16] > Generators [2, 2^(3/10)*7^(1/10)] > Prime mapping [2, 2*2^(3/10)*7^(1/10), 2*2^(1/5)*7^(2/5), 7, > 7/4*2^(2/5)*7^(4/5)] > > 11-limit meanpop [1, 4, 10, -13, 4, 13, -24, 12, -44, -71] > Generators [7^(13/71)*11^(10/71), 7^(11/71)*11^(3/71)] > Prime mapping [7^(13/71)*11^(10/71), 7^(24/71)*11^(13/71), > 7^(44/71)*11^(12/71), 7, 11] > > 5-limit miracle 34171875/33554432 > Generators [3^(7/25)*5^(6/25), 1/5*3^(3/25)*5^(24/25)] > Prime mapping [3^(7/25)*5^(6/25), 3, 5] > > 7-limit miracle [6, -7, -2, -25, -20, 15] > Generators [3^(7/25)*5^(6/25), 1/5*3^(3/25)*5^(24/25)] > Prime mapping [3^(7/25)*5^(6/25), 3, 5, 3^(3/5)*5^(4/5)] > > 11-limit miracle [6, -7, -2, 15, -25, -20, 3, 15, 59, 49] > Generators [5^(15/59)*11^(7/59), 1/5*5^(57/59)*11^(3/59)] > Prime mapping [5^(15/59)*11^(7/59), 5^(3/59)*11^(25/59), 5, > 5^(49/59)*11^(15/59), 11]
top of page bottom of page up down


Message: 6752 - Contents - Hide Contents

Date: Mon, 14 Apr 2003 21:08:06

Subject: Re: Canonical homomorphisms revisted

From: wallyesterpaulrus

--- In tuning-math@xxxxxxxxxxx.xxxx "Gene Ward Smith" <gwsmith@s...> 
wrote:
> --- In tuning-math@xxxxxxxxxxx.xxxx "wallyesterpaulrus" > <wallyesterpaulrus@y...> wrote: >
>> what do you make of monz's use of the term "internal homomorphism" on >> this page: >> >> more on the duodene * [with cont.] (Wayb.) >
> It makes no sense to me. Oh well. :) >
>> anyway, so miracle doesn't want to have 2 as a generator? then what >> does the scale "really" look like? >
> 72-et with slightly flattened octaves, perhaps.
no, i meant something with about as many notes per octave as blackjack or canasta, but using the generators you posted instead of 2 . . . are those just the secor and a flattened octave? i didn't bother to check . . .
top of page bottom of page up down


Message: 6753 - Contents - Hide Contents

Date: Wed, 16 Apr 2003 05:59:22

Subject: Ennealimmal[45]

From: Gene Ward Smith

The standard 45-et val, h45 = [45, 71, 104, 126], has 81/80,
2401/2400 and 4375/4374 as a comma basis. The Fokker block for this is

[1, 49/48, 36/35, 21/20, 200/189, 27/25, 54/49, 10/9, 245/216, 8/7, 
7/6, 25/21, 6/5, 49/40, 100/81, 63/50, 9/7, 35/27, 324/245, 4/3,
49/36, 243/175,7/5, 10/7, 350/243, 72/49, 3/2, 245/162, 54/35, 14/9,
100/63, 81/50, 80/49, 5/3, 42/25, 12/7, 7/4, 432/245, 9/5, 49/27,
50/27, 189/100, 40/21, 35/18, 96/49]

which in terms of the 612 et, is

[0, 18, 25, 43, 50, 68, 86, 93, 111, 118, 136, 154, 161, 179, 186,
204,222, 229, 247, 254, 272, 290, 297, 315, 322, 340, 358, 365, 383,
390, 408, 426, 433, 451, 458, 476, 494, 501, 519, 526, 544, 562, 569,
587, 594]

All of this is nicely regular, but adjusting by an 81/80 has some
interest but not as much as some smaller chromas. 

However, 16/15 as a chroma also works in a sense; we have instead of
the standard val ennealimmal ^ 16/15 = [45, 73, 107, 128] as a val.
The corresponding Fokker block for [16/15, 2401/2400, 4375/4374] is

[1, 36/35, 200/189, 49/48, 21/20, 27/25, 10/9, 8/7, 54/49, 245/216, 
7/6, 6/5, 216/175, 25/21, 60/49, 63/50, 35/27, 4/3, 9/7, 324/245,
49/36, 7/5, 36/25, 25/18, 10/7, 72/49, 245/162, 14/9, 3/2, 54/35,
100/63, 49/30, 42/25, 175/108, 5/3, 12/7, 432/245, 49/27, 7/4, 9/5,
50/27, 40/21, 96/49, 189/100, 35/18]

which in terms of the 612-et is

[0, 25, 50, 18, 43, 68, 93, 118, 86, 111, 136, 161, 186, 154, 179,
204,229, 254, 222, 247, 272, 297, 322, 290, 315, 340, 365, 390, 358,
383, 408, 433, 458, 426, 451, 476, 501, 526, 494, 519, 544, 569, 594,
562, 587]

Here things are not ordered by increasing size; in terms of Paul
theory this is not a valid val. However, if we reorder the above, we
see that the two scales, in 612-et, are identical. Ordering it as
above leads to 16/15 as a chroma in terms of circulating chords, and
we could, if we chose, approach the scale in this way.


top of page bottom of page up down


Message: 6754 - Contents - Hide Contents

Date: Wed, 16 Apr 2003 07:31:09

Subject: 7-limit tempered scale possibilities

From: Gene Ward Smith

I give the name of the temperament, the wedgie, the Graham complexity,
the chroma and the scale size, in that order. These all have scale
size more than 50% larger than Graham complexity. Will Carl stretch a
point and include Kleismic[11]? I'm betting against.


["Duodecimal", [0, 12, 24, 19, 38, 22], 24, 49/48, 48]

["Hemikleismic", [12, 10, -9, -12, -48, -49], 21, 28/27, 45]

["Kleismic", [6, 5, 3, -6, -12, -7], 6, 28/27, 15]

["Kleismic", [6, 5, 3, -6, -12, -7], 6, 16/15, 11]

["Tripletone", [3, 0, -6, -7, -18, -14], 9, 28/27, 15]

["Tripletone", [3, 0, -6, -7, -18, -14], 9, 49/48, 15]

["Hemifourth", [2, 8, 1, 8, -4, -20], 8, 25/24, 14]

["Meantone", [1, 4, 10, 4, 13, 12], 10, 49/48, 19]

["Hemithird", [15, -2, -5, -38, -50, -6], 20, 28/27, 50]

["Injera", [2, 8, 8, 8, 7, -4], 8, 25/24, 14]

["Injera", [2, 8, 8, 8, 7, -4], 8, 49/48, 14]

["Double wide", [8, 6, 6, -9, -13, -3], 8, 16/15, 14]

["Double wide", [8, 6, 6, -9, -13, -3], 8, 28/27, 18]

["Hemithird", [15, -2, -5, -38, -50, -6], 20, 36/35, 37]

["Superpythagorean", [1, 9, -2, 12, -6, -30], 11, 25/24, 17]

["Muggles", [5, 1, -7, -10, -25, -19], 12, 28/27, 22]

["Hemififth", [2, 25, 13, 35, 15, -40], 25, 25/24, 48]

["Muggles", [5, 1, -7, -10, -25, -19], 12, 49/48, 19]

["Hemiwuerschmidt", [16, 2, 5, -34, -37, 6], 16, 28/27, 43]

["Beatles", [2, -9, -4, -19, -12, 16], 11, 25/24, 20]

["Beatles", [2, -9, -4, -19, -12, 16], 11, 36/35, 17]

["Wizard", [12, -2, 20, -31, -2, 52], 22, 21/20, 34]

["Hemiwuerschmidt", [16, 2, 5, -34, -37, 6], 16, 36/35, 25]

["Ennealimmal", [18, 27, 18, 1, -22, -34], 27, 16/15, 45]

["Magic", [5, 1, 12, -10, 5, 25], 12, 49/48, 19]

["Nonkleismic", [10, 9, 7, -9, -17, -9], 10, 16/15, 19]

["Nonkleismic", [10, 9, 7, -9, -17, -9], 10, 28/27, 23]

["Decimal", [4, 2, 2, -6, -8, -1], 4, 28/27, 10]

["Orwell", [7, -3, 8, -21, -7, 27], 11, 21/20, 18]

["Diminished", [4, 4, 4, -3, -5, -2], 4, 16/15, 8]

["Diminished", [4, 4, 4, -3, -5, -2], 4, 28/27, 8]

["Miracle", [6, -7, -2, -25, -20, 15], 13, 25/24, 20]

["Miracle", [6, -7, -2, -25, -20, 15], 13, 36/35, 21]

["Blackwood", [0, 5, 0, 8, 0, -14], 5, 25/24, 10]

["Miracle", [6, -7, -2, -25, -20, 15], 13, 28/27, 20]

["Quartaminorthirds", [9, 5, -3, -13, -30, -21], 12, 28/27, 30]

["Supermajor seconds", [3, 12, -1, 12, -10, -36], 13, 25/24, 21]

["Schismic", [1, -8, -14, -15, -25, -10], 15, 49/48, 29]

["Schismic", [1, -8, -14, -15, -25, -10], 15, 36/35, 24]

["Superkleismic", [9, 10, -3, -5, -30, -35], 13, 15/14, 22]

["Pajara", [2, -4, -4, -11, -12, 2], 6, 28/27, 10]

["Pajara", [2, -4, -4, -11, -12, 2], 6, 25/24, 10]

["Pajara", [2, -4, -4, -11, -12, 2], 6, 36/35, 12]

["Superkleismic", [9, 10, -3, -5, -30, -35], 13, 28/27, 30]

["Pajara", [2, -4, -4, -11, -12, 2], 6, 49/48, 10]

["Squares", [4, 16, 9, 16, 3, -24], 16, 25/24, 28]

["Diaschismic", [2, -4, -16, -11, -31, -26], 18, 49/48, 34]

["Octafifths", [8, 18, 11, 10, -5, -25], 18, 25/24, 28]

["Tritonic", [5, -11, -12, -29, -33, 3], 17, 36/35, 33]

["Tritonic", [5, -11, -12, -29, -33, 3], 17, 28/27, 27]

["Tritonic", [5, -11, -12, -29, -33, 3], 17, 25/24, 27]

["Tritonic", [5, -11, -12, -29, -33, 3], 17, 49/48, 29]

["Supersupermajor", [3, 17, -1, 20, -10, -50], 18, 25/24, 31]

["Catakleismic", [6, 5, 22, -6, 18, 37], 22, 49/48, 38]


top of page bottom of page up down


Message: 6755 - Contents - Hide Contents

Date: Wed, 16 Apr 2003 00:38:19

Subject: Re: 7-limit tempered scale possibilities

From: Carl Lumma

>I give the name of the temperament, the wedgie, the Graham complexity, >the chroma and the scale size, in that order. These all have scale >size more than 50% larger than Graham complexity.
That's a good criterion, but (even with a max scale size) was it sufficient to close this list?
>Will Carl stretch a point and include Kleismic[11]? I'm betting >against.
Yeah, Kleismic[11] came up long ago, and I rejected it in favor of Kleismic[8]. ;) -Carl
top of page bottom of page up down


Message: 6756 - Contents - Hide Contents

Date: Wed, 16 Apr 2003 15:32:32

Subject: Re: 7-limit tempered scale possibilities

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx Carl Lumma <ekin@l...> wrote:

>> I give the name of the temperament, the wedgie, the Graham complexity, >> the chroma and the scale size, in that order. These all have scale >> size more than 50% larger than Graham complexity. >
> That's a good criterion, but (even with a max scale size) was it > sufficient to close this list?
Not really; I simply used a list of temperaments I already had. However, if we bound badness and insist on "validity" the list is finite, since it involves vals which have one or more of the "good" chromas as commas. After a while we would only get things with scale degrees out of order, like my "invalid" Ennealimmal[45] example.
top of page bottom of page up down


Message: 6757 - Contents - Hide Contents

Date: Thu, 17 Apr 2003 21:19:41

Subject: Re: Ennealimmal[45]

From: wallyesterpaulrus

--- In tuning-math@xxxxxxxxxxx.xxxx "Gene Ward Smith" <gwsmith@s...> 
wrote:
> The standard 45-et val, h45 = [45, 71, 104, 126], has 81/80, > 2401/2400 and 4375/4374 as a comma basis. The Fokker block for this is > > [1, 49/48, 36/35, 21/20, 200/189, 27/25, 54/49, 10/9, 245/216, 8/7, > 7/6, 25/21, 6/5, 49/40, 100/81, 63/50, 9/7, 35/27, 324/245, 4/3, > 49/36, 243/175,7/5, 10/7, 350/243, 72/49, 3/2, 245/162, 54/35, 14/9, > 100/63, 81/50, 80/49, 5/3, 42/25, 12/7, 7/4, 432/245, 9/5, 49/27, > 50/27, 189/100, 40/21, 35/18, 96/49] > > which in terms of the 612 et, is > > [0, 18, 25, 43, 50, 68, 86, 93, 111, 118, 136, 154, 161, 179, 186, > 204,222, 229, 247, 254, 272, 290, 297, 315, 322, 340, 358, 365, 383, > 390, 408, 426, 433, 451, 458, 476, 494, 501, 519, 526, 544, 562, 569, > 587, 594] > > All of this is nicely regular, but adjusting by an 81/80 has some > interest but not as much as some smaller chromas. > > However, 16/15 as a chroma also works in a sense; we have instead of > the standard val ennealimmal ^ 16/15 = [45, 73, 107, 128] as a val. > The corresponding Fokker block for [16/15, 2401/2400, 4375/4374] is > > [1, 36/35, 200/189, 49/48, 21/20, 27/25, 10/9, 8/7, 54/49, 245/216, > 7/6, 6/5, 216/175, 25/21, 60/49, 63/50, 35/27, 4/3, 9/7, 324/245, > 49/36, 7/5, 36/25, 25/18, 10/7, 72/49, 245/162, 14/9, 3/2, 54/35, > 100/63, 49/30, 42/25, 175/108, 5/3, 12/7, 432/245, 49/27, 7/4, 9/5, > 50/27, 40/21, 96/49, 189/100, 35/18] > > which in terms of the 612-et is > > [0, 25, 50, 18, 43, 68, 93, 118, 86, 111, 136, 161, 186, 154, 179, > 204,229, 254, 222, 247, 272, 297, 322, 290, 315, 340, 365, 390, 358, > 383, 408, 433, 458, 426, 451, 476, 501, 526, 494, 519, 544, 569, 594, > 562, 587] > > Here things are not ordered by increasing size; in terms of Paul > theory this is not a valid val.
can you fill me in on what i need to know about paul theory to understand this last assertion?
top of page bottom of page up down


Message: 6758 - Contents - Hide Contents

Date: Thu, 24 Apr 2003 18:28:31

Subject: Re: Canonical homomorphisms revisted

From: Carl Lumma

I have nothing to say, but I wish I did.  Does anybody
else have anything to say?  If so, you may say it now.

-Carl


top of page bottom of page up down


Message: 6759 - Contents - Hide Contents

Date: Thu, 24 Apr 2003 18:34:11

Subject: Re: Canonical homomorphisms revisted

From: Carl Lumma

>I have nothing to say,
Other than, if I understand this, it's what I've been pining for all along -- defining temperaments with maps. Unforch, I haven't tracked the reasoning behind what why maps found with this technique should be canonical. Would anybody besides Gene consider them natural mappings for their fav. temperament(s)? -Carl
top of page bottom of page up down


Message: 6760 - Contents - Hide Contents

Date: Thu, 24 Apr 2003 18:35:58

Subject: Re: Doing 12-equal within 133-et

From: Carl Lumma

>Retuning any 12-et piece into this tuning is a straightforward task, >and I hope to get around to actually doing it soon. (I've either got >to boot up DOS, which I seldom do now, or get my Linux up to speed.)
Any progress on this? I can't say I see how applying a temperament to any 12-et piece would be "straightforward"? Do you do this in maple? -Carl
top of page bottom of page up down


Message: 6761 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 10:16:44

Subject: Re: Doing 12-equal within 133-et

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx Carl Lumma <ekin@l...> wrote:

>> Retuning any 12-et piece into this tuning is a straightforward task, >> and I hope to get around to actually doing it soon. (I've either got >> to boot up DOS, which I seldom do now, or get my Linux up to speed.) >
> Any progress on this?
I'm still not happy about how Scala works under Linux for me, but I don't really need it.
> I can't say I see how applying a temperament to any 12-et piece would > be "straightforward"? Do you do this in maple?
Eh? Wasn't this exactly what you were doing with the shootout? Maple is what I'd use for my example though, and calling it straightforward is a stretch, since I'd take a midi file, turn it into a Csound score file, edit that into a Maple file, then work with the Maple file and then create a Scala file using Maple. Since Scala under Linux seems very fussy about what files it will read, and I can't get Maple to work on my chip under Windows, I'll probably need to copy the .seq file over to the DOS part of the disk under Linux, and then reboot to finish in Windows. Like I said, straightforward.
top of page bottom of page up down


Message: 6762 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 13:20:08

Subject: Re: Doing 12-equal within 133-et

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx "Gene Ward Smith" <gwsmith@s...>
wrote:

> Maple is what I'd use for my example though, and calling it > straightforward is a stretch, since I'd take a midi file, turn it into > a Csound score file, edit that into a Maple file, then work with the > Maple file and then create a Scala file using Maple. Since Scala under > Linux seems very fussy about what files it will read, and I can't get > Maple to work on my chip under Windows, I'll probably need to copy the > .seq file over to the DOS part of the disk under Linux, and then > reboot to finish in Windows. > > Like I said, straightforward.
I converted the 4th movement of the Brahms string quartet #2 to a Scala seq file in 132 (which is to say, 12) et, and Scala rendered it as a midi file with no trouble. When I changed "0 equal 132" to "0 equal 133" it told me there were not enough midi channels; depite it being a quartet Brahms uses a lot of double stops. Drat midi. When is someone going to fix it? Isn't the midi tuning standard supposed to deal with this stuff?
top of page bottom of page up down


Message: 6763 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 10:18:56

Subject: Re: Canonical homomorphisms revisted

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx Carl Lumma <ekin@l...> wrote:
>> I have nothing to say, >
> Other than, if I understand this, it's what I've been pining > for all along -- defining temperaments with maps. Unforch, > I haven't tracked the reasoning behind what why maps found > with this technique should be canonical.
Maybe I shouldn't call them that anymore.
top of page bottom of page up down


Message: 6764 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 17:15:28

Subject: Re: Doing 12-equal within 133-et

From: Manuel Op de Coul

Gene wrote:

>Since Scala under > Linux seems very fussy about what files it will read,
The scale files? Then see readme.txt. I could save the archive in Unix format, but then there'll be Windows editors to become fussy.
>Drat midi. When is someone going to fix it? Isn't the midi tuning >standard supposed to deal with this stuff?
You could use Audio Compositor as Carl did with his temperament exercise. AC has been fixed recently. Convert the seq file to a midi file first, then use example/midi/mts. Or use a tunable softsynth with a MIDI loopback, only that will affect the timing a bit. In 133-tET there are two fifths you can use. Manuel
top of page bottom of page up down


Message: 6765 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 10:57:38

Subject: Re: Doing 12-equal within 133-et

From: Carl Lumma

>> > can't say I see how applying a temperament to any 12-et piece would >> be "straightforward"? Do you do this in maple? >
>Eh? Wasn't this exactly what you were doing with the shootout?
I'm mapping 12 pitches to 12 other pitches. I was under the impression this conversion required mapping intervals to intervals. -Carl
top of page bottom of page up down


Message: 6766 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 11:11:01

Subject: Re: Canonical homomorphisms revisted

From: Carl Lumma

>> >ther than, if I understand this, it's what I've been pining >> for all along -- defining temperaments with maps. Unforch, >> I haven't tracked the reasoning behind what why maps found >> with this technique should be canonical. >
>Maybe I shouldn't call them that anymore. Why? -Carl
top of page bottom of page up down


Message: 6767 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 18:52:28

Subject: Esurientes implevit from Bach's Magnificat

From: Gene Ward Smith

I did this in both 12-et and in 133-et, using 132 steps of it as a flat 
octave, and so approximating the "canonical" Dominant Seventh
temperament mapping. The files 

Yahoo groups: /tuning-math/files/gene/magni132... * [with cont.] 

and

The Proxomitron Reveals... * [with cont.]  (Wayb.)

I prefer the canonical version with flat octaves. Anyone else have an
opinion?


top of page bottom of page up down


Message: 6768 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 18:57:44

Subject: Re: Doing 12-equal within 133-et

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx "Manuel Op de Coul"
<manuel.op.de.coul@e...> wrote:
> > Gene wrote: >
>> Since Scala under >> Linux seems very fussy about what files it will read, >
> The scale files? Then see readme.txt. I could save the archive > in Unix format, but then there'll be Windows editors to > become fussy.
They both seem fussy. I'm finding the Linux version works fine as long as everything is created in a native Linux environment, with *no* cutting and pasting of anything taken from a Windows file. The midi files for my examples were created on the Linux side.
>> Drat midi. When is someone going to fix it? Isn't the midi tuning >> standard supposed to deal with this stuff? >
> You could use Audio Compositor as Carl did with his temperament > exercise. AC has been fixed recently. Convert the seq file to > a midi file first, then use example/midi/mts.
It's the conversion of a seq to a midi file which is the problem.
> In 133-tET there are two fifths you can use.
For this canonical map business, I must use the meantone fifth.
top of page bottom of page up down


Message: 6769 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 19:00:32

Subject: Re: Canonical homomorphisms revisted

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx Carl Lumma <ekin@l...> wrote:
>>> Other than, if I understand this, it's what I've been pining >>> for all along -- defining temperaments with maps. Unforch, >>> I haven't tracked the reasoning behind what why maps found >>> with this technique should be canonical. >>
>> Maybe I shouldn't call them that anymore.
My nice, clean, overwhelmingly nifty definition only worked part of the time, and its replacement does the same job, but the definition is hardly nifty anymore. In practical terms the darn thing works, however.
top of page bottom of page up down


Message: 6771 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 12:40:39

Subject: Re: Esurientes implevit from Bach's Magnificat

From: Carl Lumma

>Yahoo groups: /tuning-math/files/gene/magni132... * [with cont.] > >and > >The Proxomitron Reveals... * [with cont.] (Wayb.) > >I prefer the canonical version with flat octaves. Anyone else have >an opinion?
Yahoo's case-sensitive -- "Gene". Must run on unix... Gene, you might try converting your Scala files from Windows to Unix linebreaks before opening them, using a text editor such as EditPad Lite. I think the canonical version sounds more just in some sense, though it seems slightly melodically warped. So this is done with a simple 12-to-12 mapping? Can you upload the scala file you used? -Carl
top of page bottom of page up down


Message: 6772 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 19:52:14

Subject: Re: Esurientes implevit from Bach's Magnificat

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx Carl Lumma <ekin@l...> wrote:

> So this is done with a simple 12-to-12 mapping? Can you upload > the scala file you used?
Here's the Scala .scl file. To get the 12-et version, simply change the line "0 equal 133" to "0 equal 132". 0 tempo 135 pm 0 exclude 10 0 velocity 110 0 frequency 85 0 equal 133 0 track 1 0 program 68 1 note 341 120 120 note 363 120 240 note 385 360 600 note 396 120 720 note 363 120 960 note 385 120 1080 note 363 120 1200 note 341 360 1560 note 363 120 1680 note 330 152 1920 note 341 120 2040 note 363 120 2160 note 385 120 2280 note 396 120 2400 note 418 120 2520 note 451 120 2640 note 440 180 2880 note 418 39 2899 note 440 93 2959 note 418 41 2996 note 440 76 3039 note 418 81 3120 note 396 240 3840 note 363 120 3960 note 385 120 4080 note 396 360 4440 note 418 120 4560 note 385 152 4800 note 396 120 4920 note 385 120 5040 note 363 360 5400 note 385 120 5520 note 352 164 5760 note 363 120 5880 note 385 120 6000 note 396 120 6120 note 418 120 6240 note 440 120 6360 note 396 120 6480 note 418 180 6720 note 396 39 6739 note 418 79 6799 note 396 41 6832 note 418 70 6879 note 396 81 6960 note 385 240 7200 note 418 600 7800 note 440 120 7920 note 418 120 8040 note 396 120 8160 note 385 120 8280 note 363 120 8400 note 341 120 8520 note 319 120 8640 note 308 240 8880 note 264 240 9120 note 363 600 9720 note 385 120 9840 note 363 120 9960 note 341 120 10080 note 330 120 10200 note 308 120 10320 note 286 120 10440 note 264 108 10560 note 253 240 10800 note 209 240 11040 note 385 480 11520 note 385 12 11640 note 363 120 11760 note 385 120 11880 note 396 120 12000 note 363 39 12019 note 385 81 12079 note 363 41 12112 note 385 76 12159 note 363 201 12360 note 341 60 12420 note 363 60 12480 note 341 120 12600 note 363 120 12720 note 385 120 12840 note 396 120 12960 note 418 120 13080 note 385 120 13200 note 396 152 13440 note 385 196 14400 note 341 120 14520 note 363 120 14640 note 385 360 15000 note 396 120 15120 note 363 144 15360 note 385 120 15480 note 363 120 15600 note 341 120 15720 note 363 120 15840 note 385 120 15960 note 418 120 16080 note 396 180 16320 note 385 39 16347 note 396 73 16399 note 385 41 16432 note 396 72 16479 note 385 81 16560 note 363 240 18240 note 363 120 18360 note 385 120 18480 note 396 360 18840 note 418 120 18960 note 385 132 19200 note 396 120 19320 note 385 120 19440 note 363 120 19560 note 385 120 19680 note 396 120 19800 note 363 120 19920 note 385 180 20160 note 341 88 20208 note 363 72 20264 note 341 68 20312 note 363 72 20352 note 341 288 21360 note 418 120 21480 note 440 120 21600 note 418 120 21720 note 396 120 21840 note 385 120 21960 note 363 120 22080 note 341 120 22200 note 319 120 22320 note 341 120 22440 note 363 120 22560 note 341 120 22680 note 319 120 22800 note 308 120 22920 note 286 120 23040 note 264 240 23280 note 440 120 23400 note 462 120 23520 note 440 120 23640 note 418 120 23760 note 396 120 23880 note 385 120 24000 note 363 120 24120 note 341 120 24240 note 363 120 24360 note 385 120 24480 note 363 120 24600 note 341 120 24720 note 330 120 24840 note 308 120 24960 note 330 240 25200 note 363 240 25440 note 407 240 25680 note 418 240 26160 note 418 240 26400 note 352 240 26640 note 363 240 27120 note 462 240 27360 note 407 240 27600 note 418 240 28080 note 473 240 28320 note 396 240 28560 note 418 240 29040 note 495 240 29280 note 407 240 29520 note 418 240 30720 note 330 120 30840 note 341 120 30960 note 363 360 31320 note 385 120 31440 note 341 132 31680 note 363 120 31800 note 341 120 31920 note 330 360 32280 note 341 120 32400 note 308 140 32640 note 330 240 32880 note 418 120 33000 note 440 120 33120 note 462 120 33240 note 495 120 33360 note 473 180 33600 note 462 39 33635 note 473 69 33679 note 462 41 33716 note 473 64 33759 note 462 81 33840 note 440 240 34560 note 341 120 34680 note 363 120 34800 note 385 360 35160 note 396 120 35280 note 363 144 35520 note 385 120 35640 note 363 120 35760 note 341 360 36120 note 363 120 36240 note 330 140 36480 note 341 240 36720 note 440 120 36840 note 462 120 36960 note 473 120 37080 note 440 120 37200 note 462 180 37440 note 440 39 37471 note 462 73 37519 note 440 41 37560 note 462 68 37599 note 440 81 37680 note 418 240 38400 note 286 120 38520 note 308 120 38640 note 330 360 39000 note 363 120 39120 note 352 180 39360 note 363 120 39480 note 385 120 39600 note 396 360 39960 note 418 120 40080 note 396 180 40320 note 418 240 40560 note 341 120 40680 note 363 120 40800 note 385 120 40920 note 363 120 41040 note 341 120 41160 note 363 120 41280 note 385 240 41520 note 396 360 41880 note 418 120 42000 note 385 180 42240 note 396 240 42480 note 440 240 42960 note 396 240 43440 note 363 240 43920 note 330 240 44400 note 418 240 44880 note 385 240 45360 note 341 240 45840 note 308 240 46320 note 396 240 46800 note 363 240 47280 note 495 240 47760 note 462 240 48240 note 418 240 48720 note 396 240 48960 note 385 120 49080 note 396 120 49200 note 418 360 49560 note 440 120 49680 note 396 144 49920 note 418 120 50040 note 396 120 50160 note 385 360 50520 note 396 120 50640 note 363 152 50880 note 385 240 51840 note 341 120 51960 note 363 120 52080 note 385 360 52440 note 418 120 52560 note 396 180 52800 note 385 39 52831 note 396 73 52879 note 385 41 52908 note 396 84 52959 note 385 93 53040 note 363 240 53760 note 330 120 53880 note 341 120 54000 note 363 360 54360 note 396 120 54480 note 385 180 54720 note 363 39 54747 note 385 69 54799 note 363 41 54832 note 385 72 54879 note 363 81 54960 note 341 240 58800 note 418 240 59040 note 473 600 59640 note 495 120 59760 note 473 120 59880 note 451 120 60000 note 440 120 60120 note 418 120 60240 note 396 120 60360 note 385 120 60480 note 363 240 60720 note 330 240 60960 note 462 600 61560 note 473 120 61680 note 462 120 61800 note 440 120 61920 note 418 120 62040 note 396 120 62160 note 385 120 62280 note 363 120 62400 note 341 240 62640 note 385 240 62880 note 440 600 63480 note 451 120 63600 note 440 120 63720 note 418 120 63840 note 396 120 63960 note 385 120 64080 note 363 120 64200 note 341 120 64320 note 330 240 64560 note 418 240 67200 note 341 120 67320 note 363 120 67440 note 385 360 67800 note 396 120 67920 note 363 152 68160 note 385 120 68280 note 363 120 68400 note 341 360 68760 note 363 120 68880 note 330 148 69120 note 341 120 69240 note 363 120 69360 note 385 120 69480 note 396 120 69600 note 418 120 69720 note 462 120 69840 note 440 180 70080 note 418 39 70107 note 440 81 70159 note 418 41 70196 note 440 68 70239 note 418 81 70320 note 396 240 71040 note 363 120 71160 note 385 120 71280 note 396 360 71640 note 418 120 71760 note 385 152 72000 note 396 120 72120 note 385 120 72240 note 363 360 72600 note 385 120 72720 note 352 156 72960 note 363 120 73080 note 385 120 73200 note 396 120 73320 note 418 120 73440 note 440 120 73560 note 396 120 73680 note 418 180 73936 note 396 68 73984 note 385 68 74024 note 396 76 74080 note 385 52 74120 note 396 52 74160 note 385 244 74400 note 418 600 75000 note 440 120 75120 note 418 120 75240 note 396 120 75360 note 385 120 75480 note 363 120 75600 note 341 120 75720 note 330 120 75840 note 308 240 76080 note 264 240 76320 note 363 600 76920 note 385 120 77040 note 363 120 77160 note 341 120 77280 note 330 120 77400 note 308 120 77520 note 286 120 77640 note 264 120 77760 note 253 240 78000 note 209 240 78240 note 385 480 78720 note 385 120 78840 note 363 120 78960 note 385 120 79080 note 396 120 79196 note 363 88 79236 note 385 88 79300 note 363 72 79344 note 385 68 79392 note 363 292 79680 note 341 120 79800 note 363 120 79920 note 385 120 80040 note 396 120 80160 note 418 120 80280 note 385 120 80400 note 396 132 0 track 2 0 program 69 1 note 253 120 120 note 264 120 240 note 286 360 600 note 308 120 720 note 264 120 960 note 286 120 1080 note 264 120 1200 note 253 360 1560 note 264 120 1680 note 231 148 1920 note 253 240 2160 note 341 120 2280 note 363 120 2400 note 385 120 2520 note 418 120 2640 note 396 180 2880 note 385 39 2911 note 396 77 2959 note 385 41 2996 note 396 64 3039 note 385 81 3120 note 363 240 3840 note 264 120 3960 note 286 120 4080 note 308 360 4440 note 330 120 4560 note 286 148 4800 note 308 120 4920 note 286 120 5040 note 264 360 5400 note 286 120 5520 note 253 156 5760 note 264 240 6000 note 363 120 6120 note 385 120 6240 note 396 120 6360 note 363 120 6480 note 385 180 6720 note 363 39 6751 note 385 77 6799 note 363 41 6836 note 385 76 6879 note 363 81 6960 note 341 240 8160 note 418 576 8760 note 451 120 8880 note 440 120 9000 note 418 120 9120 note 396 120 9240 note 385 120 9360 note 363 120 9480 note 341 120 9600 note 330 240 9840 note 286 240 10080 note 363 600 10680 note 396 120 10800 note 385 120 10920 note 363 120 11040 note 341 120 11160 note 330 120 11280 note 308 120 11400 note 286 120 11520 note 308 120 11640 note 330 120 11760 note 341 120 11880 note 363 120 12000 note 330 39 12027 note 341 77 12079 note 330 41 12120 note 341 68 12159 note 330 201 12360 note 308 60 12420 note 330 60 12480 note 341 120 12600 note 330 120 12720 note 341 120 12840 note 363 120 12960 note 385 120 13080 note 341 120 13200 note 363 156 13440 note 341 176 14400 note 253 120 14520 note 264 120 14640 note 286 360 15000 note 308 120 15120 note 264 136 15360 note 253 120 15480 note 264 120 15600 note 286 120 15720 note 308 120 15840 note 319 240 16080 note 220 240 16320 note 308 120 16440 note 286 120 16560 note 308 240 18240 note 264 120 18360 note 286 120 18480 note 308 360 18840 note 319 120 18960 note 286 128 19200 note 264 120 19320 note 286 120 19440 note 308 240 19680 note 231 240 19920 note 330 240 20160 note 286 120 20280 note 264 120 20400 note 286 240 21840 note 341 360 22200 note 363 120 22320 note 341 120 22440 note 319 120 22560 note 308 120 22680 note 286 120 22800 note 264 120 22920 note 253 120 23040 note 231 240 23760 note 363 360 24120 note 385 120 24240 note 363 120 24360 note 341 120 24480 note 330 120 24600 note 308 120 24720 note 286 120 24840 note 264 120 24960 note 253 240 25200 note 308 240 25440 note 308 240 25680 note 330 240 26160 note 319 240 26400 note 319 240 26640 note 308 240 27600 note 462 240 27840 note 407 240 28080 note 418 240 28560 note 473 240 28800 note 407 240 29040 note 418 240 30720 note 286 120 30840 note 308 120 30960 note 330 360 31320 note 341 120 31440 note 308 148 31680 note 330 120 31800 note 308 120 31920 note 286 360 32280 note 308 120 32400 note 275 136 32640 note 286 120 32760 note 308 120 32880 note 330 120 33000 note 341 120 33120 note 363 120 33240 note 396 120 33360 note 385 180 33600 note 363 39 33627 note 385 77 33679 note 363 41 33712 note 385 76 33759 note 363 81 33840 note 341 240 34560 note 308 120 34680 note 330 120 34800 note 341 360 35160 note 363 120 35280 note 330 148 35520 note 341 120 35640 note 330 120 35760 note 308 360 36120 note 330 120 36240 note 297 148 36480 note 308 120 36600 note 330 120 36720 note 341 120 36840 note 363 120 36960 note 385 120 37080 note 341 120 37200 note 363 180 37440 note 341 39 37467 note 363 65 37519 note 341 41 37552 note 363 72 37599 note 341 81 37680 note 330 240 39360 note 264 120 39480 note 286 120 39600 note 308 360 39960 note 341 120 40080 note 319 180 40320 note 319 960 41280 note 330 240 41520 note 308 360 41880 note 330 120 42000 note 286 180 42240 note 308 240 42480 note 341 240 42960 note 440 240 43440 note 418 240 43920 note 363 240 44400 note 341 240 44880 note 418 240 45360 note 396 240 45840 note 341 240 46320 note 308 240 46800 note 396 240 47280 note 396 240 47760 note 396 240 48240 note 385 240 48720 note 363 240 48960 note 341 120 49080 note 363 120 49200 note 385 360 49560 note 396 120 49680 note 363 152 49920 note 385 120 50040 note 363 120 50160 note 341 360 50520 note 363 120 50640 note 330 148 50880 note 341 240 51840 note 341 120 51960 note 363 120 52080 note 385 360 52440 note 418 120 52560 note 396 180 52800 note 385 39 52827 note 396 81 52879 note 385 41 52920 note 396 72 52959 note 385 81 53040 note 363 240 53760 note 330 120 53880 note 341 120 54000 note 363 360 54360 note 396 120 54480 note 385 180 54720 note 363 39 54751 note 385 69 54799 note 363 41 54832 note 385 68 54879 note 363 81 54960 note 341 240 57840 note 330 240 58080 note 363 600 58680 note 396 120 58800 note 385 120 58920 note 440 120 59040 note 418 120 59160 note 396 120 59280 note 385 120 59400 note 363 120 59520 note 341 240 59760 note 308 240 60000 note 341 600 60600 note 385 120 60720 note 363 120 60840 note 418 120 60960 note 396 120 61080 note 385 120 61200 note 363 120 61320 note 341 120 61440 note 330 240 61680 note 286 240 61920 note 330 600 62520 note 363 120 62640 note 341 120 62760 note 396 120 62880 note 385 120 63000 note 363 120 63120 note 341 120 63240 note 330 120 63360 note 308 120 63480 note 286 120 63600 note 264 120 63720 note 319 120 63840 note 308 120 63960 note 286 120 64080 note 264 120 64200 note 253 120 64320 note 231 240 64560 note 363 240 67200 note 253 120 67320 note 264 120 67440 note 286 360 67800 note 308 120 67920 note 264 136 68160 note 286 120 68280 note 264 120 68400 note 253 360 68760 note 264 120 68880 note 231 128 69120 note 253 240 69360 note 341 120 69480 note 363 120 69600 note 385 120 69720 note 418 120 69840 note 396 180 70080 note 385 39 70111 note 396 69 70159 note 385 41 70196 note 396 68 70239 note 385 81 70320 note 363 240 71040 note 264 120 71160 note 286 120 71280 note 308 360 71640 note 319 120 71760 note 286 180 72000 note 308 120 72120 note 286 120 72240 note 264 360 72600 note 286 120 72720 note 253 132 72960 note 264 240 73200 note 363 120 73320 note 385 120 73440 note 396 120 73560 note 363 120 73680 note 385 180 73928 note 363 68 73976 note 341 68 74016 note 363 76 74072 note 341 68 74120 note 363 72 74164 note 341 244 75360 note 418 600 75960 note 451 120 76080 note 440 120 76200 note 418 120 76320 note 396 120 76440 note 385 120 76560 note 363 120 76680 note 341 120 76800 note 330 240 77040 note 286 240 77280 note 363 480 77760 note 363 120 77880 note 396 120 78000 note 385 120 78120 note 363 120 78240 note 341 120 78360 note 330 120 78480 note 308 120 78600 note 286 120 78720 note 308 120 78840 note 330 120 78960 note 341 120 79080 note 363 120 79200 note 330 84 79236 note 341 84 79304 note 330 84 79356 note 341 84 79404 note 330 268 79680 note 341 120 79800 note 330 120 79920 note 341 120 80040 note 363 120 80160 note 385 120 80280 note 341 120 80400 note 363 148 0 track 3 0 program 60 13440 note 341 120 13560 note 363 120 13680 note 385 360 14040 note 396 120 14160 note 363 140 14400 note 385 120 14520 note 363 120 14640 note 341 284 15120 note 330 228 15360 note 341 120 15480 note 363 120 15600 note 385 120 15720 note 396 120 15840 note 418 120 15960 note 462 120 16080 note 440 240 16320 note 418 39 16359 note 440 40 16399 note 418 41 16440 note 440 39 16479 note 418 81 16560 note 396 240 17280 note 363 120 17400 note 385 120 17520 note 396 360 17880 note 418 120 18000 note 385 240 18240 note 396 120 18360 note 385 120 18480 note 363 268 18960 note 352 232 19200 note 363 120 19320 note 385 120 19440 note 396 120 19560 note 418 120 19680 note 440 120 19800 note 396 120 19920 note 418 240 20160 note 396 240 20400 note 385 240 20880 note 418 240 21120 note 418 120 21240 note 440 120 21360 note 418 120 21480 note 396 120 21600 note 385 120 21720 note 363 120 21840 note 341 120 21960 note 319 120 22080 note 308 240 22320 note 264 240 22800 note 440 240 23040 note 440 120 23160 note 451 120 23280 note 440 120 23400 note 418 120 23520 note 396 120 23640 note 385 120 23760 note 363 120 23880 note 341 120 24000 note 330 240 24240 note 286 240 24720 note 363 240 24960 note 385 240 25200 note 396 240 25680 note 418 240 25920 note 341 240 26160 note 363 240 26640 note 363 240 26880 note 330 120 27000 note 308 120 27120 note 286 120 27240 note 308 120 27360 note 330 120 27480 note 341 120 27600 note 363 120 27720 note 385 120 27840 note 363 120 27960 note 341 120 28080 note 330 120 28200 note 341 120 28320 note 363 120 28440 note 385 120 28560 note 396 120 28800 note 363 120 28920 note 418 120 29040 note 396 120 29160 note 385 120 29280 note 363 120 29400 note 341 120 29520 note 330 120 29640 note 308 120 29760 note 286 120 29880 note 264 120 30000 note 286 120 30120 note 385 120 30240 note 308 39 30263 note 330 77 30319 note 308 41 30352 note 330 80 30399 note 308 321 30720 note 286 480 38400 note 330 120 38520 note 341 120 38640 note 363 360 39000 note 396 120 39120 note 385 240 39360 note 396 120 39480 note 385 120 39600 note 363 240 40080 note 363 240 40320 note 341 120 40440 note 363 120 40560 note 385 120 40680 note 396 120 40800 note 418 120 40920 note 440 120 41040 note 451 120 41160 note 440 120 41280 note 418 216 41520 note 396 240 42240 note 440 120 42360 note 418 120 42480 note 385 360 42840 note 363 120 42960 note 341 240 43200 note 341 120 43320 note 330 120 43440 note 308 120 43560 note 330 120 43680 note 341 120 43800 note 363 120 43920 note 385 120 44040 note 341 120 44160 note 418 120 44280 note 396 120 44400 note 385 360 44760 note 363 120 44880 note 341 352 45240 note 330 120 45360 note 308 120 45480 note 330 120 45600 note 341 120 45720 note 363 120 45840 note 385 120 45960 note 341 120 46080 note 396 120 46200 note 418 120 46320 note 396 120 46440 note 385 120 46560 note 363 120 46680 note 341 120 46800 note 330 120 46920 note 308 120 47040 note 286 120 47160 note 330 120 47280 note 308 120 47400 note 286 120 47520 note 363 120 47640 note 330 120 47760 note 308 120 47880 note 286 120 48000 note 385 120 48120 note 341 120 48240 note 330 120 48360 note 308 120 48480 note 396 120 48600 note 363 120 48720 note 341 120 48840 note 330 120 48960 note 418 240 49200 note 341 240 49680 note 286 240 49920 note 418 1080 51000 note 440 120 51120 note 418 120 51240 note 385 120 51360 note 396 120 51480 note 418 120 51600 note 396 120 51720 note 363 120 51840 note 385 120 51960 note 341 120 52080 note 330 120 52200 note 308 120 52320 note 330 120 52440 note 341 120 52560 note 363 120 52680 note 385 120 52800 note 396 120 52920 note 418 120 53040 note 396 120 53160 note 363 120 53280 note 385 120 53400 note 396 120 53520 note 385 120 53640 note 341 120 53760 note 363 120 53880 note 330 120 54000 note 308 120 54120 note 286 120 54240 note 308 120 54360 note 330 120 54480 note 341 120 54600 note 363 120 54720 note 385 120 54840 note 396 120 54960 note 385 120 55080 note 341 120 55200 note 363 120 55320 note 385 120 55440 note 363 120 55560 note 330 120 55680 note 341 120 55800 note 308 120 55920 note 330 120 56040 note 341 120 56160 note 363 120 56280 note 385 120 56400 note 396 120 56520 note 418 120 56640 note 440 120 56760 note 451 120 56880 note 440 120 57000 note 418 120 57120 note 396 120 57240 note 385 120 57360 note 363 120 57480 note 341 120 57600 note 330 240 57840 note 286 240 58320 note 418 336 58680 note 440 120 58800 note 418 120 58920 note 396 120 59040 note 385 120 59160 note 363 120 59280 note 341 120 59400 note 319 120 59520 note 308 240 59760 note 264 240 60240 note 396 348 60600 note 418 120 60720 note 396 120 60840 note 385 120 60960 note 363 120 61080 note 341 120 61200 note 330 120 61320 note 308 120 61440 note 286 240 61680 note 253 240 62160 note 330 240 62400 note 341 120 62520 note 330 120 62640 note 308 120 62760 note 330 120 62880 note 341 120 63000 note 363 120 63120 note 385 160 63600 note 363 120 63720 note 341 120 63840 note 363 240 64080 note 308 96 64204 note 308 112 64320 note 396 120 64440 note 385 120 64560 note 396 240 65040 note 286 240 65280 note 374 120 65400 note 363 120 65520 note 374 240 66000 note 363 240 66240 note 330 240 66480 note 341 120 66600 note 418 120 66720 note 396 120 66840 note 385 120 66960 note 396 120 67080 note 363 120 67200 note 341 480 0 track 4 0 program 42 0 note 77 240 480 note 22 240 960 note -55 240 1440 note 22 240 1920 note 77 240 2400 note 88 240 2880 note 99 240 3364 note 44 228 3840 note -33 240 4320 note 44 240 4800 note 99 240 5280 note 44 240 5760 note -33 240 6240 note 66 240 6720 note 77 240 6960 note 22 240 7200 note -11 240 7440 note 22 240 7680 note -55 240 7920 note 121 240 8160 note 77 240 8400 note 121 240 8640 note 132 240 8880 note 176 240 9120 note 99 240 9360 note 132 240 9600 note 154 240 9840 note 66 240 10080 note 22 240 10320 note 66 240 10560 note -55 240 10800 note 121 240 11040 note 44 240 11280 note 77 240 11520 note 0 240 11760 note 132 240 12000 note 154 240 12240 note 22 240 12480 note -55 240 13440 note 77 240 13920 note 22 240 14400 note -55 240 14880 note 22 240 15360 note 77 240 15840 note 88 240 16320 note 99 240 16800 note 44 240 17280 note -33 240 17760 note 44 240 18240 note 99 240 18720 note 44 240 19200 note -33 240 19680 note 66 240 20160 note 77 240 20400 note 22 240 20640 note -11 240 20880 note 22 240 21120 note -55 240 21360 note 121 240 21600 note 77 240 21840 note 121 240 22080 note 132 240 22320 note 44 240 22560 note 0 240 22800 note 44 240 23040 note -33 240 23280 note 132 240 23520 note 99 240 23760 note 132 240 24000 note 66 240 24240 note 22 240 24480 note 66 240 24960 note 77 240 25440 note 66 240 25920 note -11 240 26400 note 11 240 26880 note 22 240 27120 note 66 240 27360 note 22 240 27600 note 66 240 27840 note 44 240 28080 note 77 240 28320 note 44 240 28560 note 77 240 28800 note 66 240 29040 note 99 240 29280 note 66 240 29520 note 99 240 29760 note 121 240 30000 note 77 240 30240 note 99 240 30480 note -33 240 30720 note 22 240 31200 note 99 240 31680 note 154 240 32160 note 99 240 32640 note 22 240 33120 note 33 240 33600 note 44 240 34080 note 121 240 34560 note 176 240 35040 note 121 240 35520 note 44 240 36000 note 121 240 36480 note 176 240 36960 note 132 240 37440 note 154 240 37680 note 99 240 37920 note 66 240 38160 note 99 240 38400 note 22 240 38880 note -11 240 39360 note -33 240 39840 note 99 240 40320 note 121 240 40800 note 77 240 41280 note 132 240 41760 note 77 240 42240 note 0 240 42480 note 132 240 42720 note 0 240 42960 note 132 240 43200 note 0 240 43440 note 132 240 43680 note 0 240 43920 note 132 240 44160 note -11 240 44400 note 121 240 44640 note -11 240 44880 note 121 240 45120 note -11 240 45360 note 121 240 45600 note -11 240 45840 note 121 240 46080 note -33 240 46320 note 99 240 46560 note -55 240 46800 note 77 240 47040 note -66 240 47280 note 66 240 47520 note 22 240 47760 note 154 240 48000 note -55 240 48240 note 77 240 48480 note -33 240 48720 note 99 240 48960 note -11 240 49440 note 22 240 49920 note 77 240 50400 note 22 240 50880 note -55 240 51120 note -11 240 51360 note 22 240 51600 note 66 240 51840 note -55 240 52080 note 77 240 52320 note -88 240 52560 note 44 240 52800 note 99 240 53040 note 66 240 53280 note 77 240 53520 note -55 240 53760 note 22 240 54000 note 154 240 54240 note 66 240 54480 note 198 240 54720 note 209 240 54960 note 176 240 55200 note 143 240 55440 note 165 240 55680 note 176 240 55920 note 154 240 56160 note 132 240 56400 note 121 240 56640 note 132 240 56880 note 154 240 57120 note 176 240 57360 note 132 240 57600 note 154 240 57840 note 66 240 58080 note 22 240 58320 note 66 240 58560 note 77 240 58800 note 121 240 59040 note 77 240 59280 note 121 240 59520 note 132 240 59760 note 44 240 60000 note 0 240 60240 note 44 240 60480 note 66 240 60720 note 99 240 60960 note 66 240 61200 note 99 240 61440 note 121 240 61680 note 22 240 61920 note -11 240 62160 note 22 240 62400 note 44 240 62640 note 77 240 62880 note 44 240 63120 note 77 240 63360 note 99 240 63600 note 22 240 63840 note -33 240 64080 note 0 240 64320 note 22 240 64560 note 66 240 65760 note 11 240 66240 note 0 240 66480 note -11 120 66600 note -55 120 66720 note 22 240 66960 note 154 240 67200 note 77 240 67680 note 22 240 68160 note -55 240 68640 note 22 240 69120 note 77 240 69600 note 88 240 70080 note 99 240 70560 note 44 240 71040 note -33 240 71520 note 44 240 72000 note 99 240 72480 note 44 240 72960 note -33 240 73440 note 66 240 73920 note 77 240 74160 note 22 240 74400 note -11 240 74640 note 22 240 74880 note -55 240 75120 note 121 240 75360 note 77 240 75600 note 121 240 75840 note 132 240 76080 note 176 240 76320 note 99 240 76560 note 132 240 76800 note 154 240 77040 note 66 240 77280 note 22 240 77520 note 66 240 77760 note 77 240 78000 note 121 240 78240 note 44 240 78480 note 77 240 78720 note 0 240 78960 note 132 240 79200 note 154 240 79440 note 22 240 79680 note 77 240 80700 note -55 480
top of page bottom of page up down


Message: 6773 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 13:02:54

Subject: Re: Esurientes implevit from Bach's Magnificat

From: Carl Lumma

>> >o this is done with a simple 12-to-12 mapping? Can you upload >> the scala file you used? >
>Here's the Scala .scl file. To get the 12-et version, simply change >the line "0 equal 133" to "0 equal 132".
That's a .seq file, no? -Carl
top of page bottom of page up down


Message: 6774 - Contents - Hide Contents

Date: Sat, 26 Apr 2003 20:12:55

Subject: Re: Esurientes implevit from Bach's Magnificat

From: Gene Ward Smith

--- In tuning-math@xxxxxxxxxxx.xxxx Carl Lumma <ekin@l...> wrote:

>>> So this is done with a simple 12-to-12 mapping? Can you upload >>> the scala file you used? >>
>> Here's the Scala .scl file. To get the 12-et version, simply change >> the line "0 equal 133" to "0 equal 132". >
> That's a .seq file, no?
Sorry, yes! Scala will convert it to a midi file if you save it as something.scl, load an abitrary scale file, and under "tools" invoke the transform to midi file.
top of page bottom of page up

Previous Next

6000 6050 6100 6150 6200 6250 6300 6350 6400 6450 6500 6550 6600 6650 6700 6750 6800 6850 6900 6950

6750 - 6775 -

top of page